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A. Derivation of the maximum likelihood es-

timators

A.1. Benchmark

We denote the maximum likelihood estimate of parameter q as q̂. Here we

derive the estimators for µr, µx, β, θ, σ2
u, σ

2
v and σuv. We note in particular

that σ̂2
u is the estimator of σ2

u, not the square of the estimator of σu, and

similarly for σ̂2
v . Maximizing the exact log likelihood function is the same as

minimizing the function L:

L(β, θ, µr, µx, σuv, σu, σv) = log(σ2
v)− log(1− θ2) +

1− θ2

σ2
v

(x0 − µx)2

+ T log(|Σ|) +
σ2
v

|Σ|

T∑
t=1

u2t − 2
σuv
|Σ|

T∑
t=1

utvt +
σ2
u

|Σ|

T∑
t=1

v2t , (A.1)
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where |Σ| = σ2
uσ

2
v − σ2

uv. The function L is −2 times the logarithm of the

likelihood function (6) modulo constants. The first-order conditions arise from

setting the following partial derivatives of L to zero:

0 =
∂

∂β
L = 2

[
σ2
v

|Σ|

T∑
t=1

ut(µx − xt−1)−
σuv
|Σ|

T∑
t=1

(µx − xt−1)vt

]
(A.2a)

0 =
∂

∂θ
L = 2

[
θ

1− θ2
− θ (x0 − µx)2

σ2
v

− σuv
|Σ|

T∑
t=1

ut(µx − xt−1) +
σ2
u

|Σ|

T∑
t=1

vt(µx − xt−1)

]
(A.2b)

0 =
∂

∂µr
L = 2

[
− σ

2
v

|Σ|

T∑
t=1

ut +
σuv
|Σ|

T∑
t=1

vt

]
(A.2c)

0 =
∂

∂µx
L = 2

[
− 1− θ2

σ2
v

(x0 − µx) +
σ2
v

|Σ|

T∑
t=1

βut

− σuv
|Σ|

T∑
t=1

(βvt − (1− θ)ut)−
σ2
u

|Σ|

T∑
t=1

(1− θ)vt

]
(A.2d)

0 =
∂

∂σuv
L = −T 2σuv

|Σ|

+ 2
σuvσ

2
v

|Σ|2
T∑
t=1

u2t − 2
σ2
uσ

2
v + σ2

uv

|Σ|2
T∑
t=1

utvt + 2
σuvσ

2
u

|Σ|2
T∑
t=1

v2t

(A.2e)

0 =
∂

∂σ2
u

L = T
σ2
v

|Σ|
− σ4

v

|Σ|2
T∑
t=1

u2t + 2
σuvσ

2
v

|Σ|2
T∑
t=1

utvt −
σ2
uv

|Σ|2
T∑
t=1

v2t (A.2f)

0 =
∂

∂σ2
v

L =
1

σ2
v

+ T
σ2
u

|Σ|
− (1− θ2)(x0 − µx)2

1

σ4
v
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− σ2
uv

|Σ|2
T∑
t=1

u2t + 2
σuvσ

2
u

|Σ|2
T∑
t=1

utvt −
σ4
u

|Σ|2
T∑
t=1

v2t .

(A.2g)

Define the residuals

ût = rt − µ̂r − β̂(xt−1 − µ̂x) (A.3a)

v̂t = xt − µ̂x − θ̂(xt−1 − µ̂x). (A.3b)

We now outline the algebra that allows us to solve these first-order conditions.

Step 1: Express µ̂x in terms of θ̂ and the data.

Combining the first-order conditions (A.2c) and (A.2d) gives

T∑
t=1

v̂t =
(

1 + θ̂
)

(µ̂x − x0) , (A.4)

which we can write as

µ̂x =

(
1 + θ̂

)
x0 +

∑T
t=1

(
xt − θ̂xt−1

)
(

1 + θ̂
)

+
(

1− θ̂
)
T

. (A.5)

Step 2: Express the covariance matrix in terms of µ̂x, θ̂, µ̂r, β̂ and the data.

The first-order conditions (A.2e), (A.2f) and (A.2g) give the relations

T σ̂2
u = − σ̂uv

σ̂2
v

σ̂uv + (1− θ̂2)(x0 − µ̂x)2
(
σ̂uv
σ̂2
v

)2

+
T∑
t=1

û2t , (A.6)

(T + 1)σ̂2
v = (1− θ̂2)(x0 − µ̂x)2 +

T∑
t=1

v̂2t , (A.7)

σ̂uv
σ̂2
v

=

∑T
t=1 ûtv̂t∑T
t=1 v̂

2
t

. (A.8)

3



Step 3: Solve for θ̂ in terms of the data. This also gives µ̂x and σ̂2
v in terms

of the data.

Combining the first-order conditions (A.2a) and (A.2b) gives

0 =
T∑
t=1

(µ̂x − xt−1)v̂t + σ̂2
v

θ̂

1− θ̂2
− θ̂(x0 − µ̂x)2. (A.9)

Here µ̂x and v̂t are functions of only θ̂ and the data, so if we combine (A.27)

and (A.7) we can get an equation for θ̂:

0 = (T + 1)
T∑
t=1

(µ̂x − xt−1)v̂t +
θ̂

1− θ̂2

T∑
t=1

v̂2t − T θ̂(x0 − µ̂x)2. (A.10)

Because we require that −1 < θ̂ < 1, we can multiply this by(
(T + 1)− (T − 1)θ̂

)2 (
1− θ̂2

)
(A.11)

and rearrange to obtain

0 = T
(
θ̂ − 1

)(
(T + 1)

(
1− θ̂2

)
+ 2θ̂

)( T∑
t=0

xt − θ̂
T−1∑
t=1

xt

)2

+
(

(T + 1)− (T − 1)θ̂
)(

θ̂ − 1
)( T∑

t=0

xt − θ̂
T−1∑
t=1

xt

)

×

[
2T θ̂(1 + θ̂)

(
T−1∑
t=1

xt

)
−
(

(T + 1) + (T − 1)θ̂
)( T∑

t=0

xt +
T−1∑
t=1

xt

)]
+
(

(T + 1)− (T − 1)θ̂
)2

×

[
θ̂
((

1− θ̂2
)
T + 1

)(T−1∑
t=1

x2t

)
+
(
θ̂2(T − 1)− (T + 1)

) T∑
t=1

xtxt−1 + θ̂
T∑
t=0

x2t

]
.

(A.12)

This is a fifth-order polynomial in θ̂ where the coefficients are determined by

the sample. As a consequence, it is very hard to establish analytical results

on existence and uniqueness of solutions that would be accepted as estimators
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of θ. Nevertheless, in lengthy experimentation and simulation runs we have

always found that this polynomial only has one root within the unit circle of

the complex plane and that this root is real. Therefore this root is a valid

MLE of θ. Given this solution for θ̂, (A.5) gives the estimator for µx and (A.7)

gives the estimator for σ2
v .

Step 4: Solve for µ̂r and β̂ in terms of the data. This also gives the solution

for σ̂uv and σ̂2
u.

The first-order condition (A.2c) gives

T∑
t=1

ût =
σ̂uv
σ̂2
v

T∑
t=1

v̂t. (A.13)

Combining this with the first-order condition (A.2a) yields

β̂ = βOLS +
σ̂uv
σ̂2
v

(
θ̂ − θOLS

)
, (A.14)

where

θOLS =
1

1
T

∑T
t=1 x

2
t−1 −

(
1
T

∑T
t=1 xt−1

)2
[

1

T

T∑
t=1

xt−1xt−

(
1

T

T∑
t=1

xt−1

)(
1

T

T∑
s=1

xs

)]
(A.15)

is the OLS coefficient of regressing xt on xt−1 and

βOLS =
1

1
T

∑T
t=1 x

2
t−1 −

(
1
T

∑T
t=1 xt−1

)2
[

1

T

T∑
t=1

xt−1rt−

(
1

T

T∑
t=1

xt−1

)(
1

T

T∑
s=1

rs

)]
(A.16)

is the OLS coefficient of regressing rt on xt−1.

Equations (A.8), (A.13) and (A.14) constitute a system of three equations

in the three unknowns µ̂r, β̂ and σ̂uv
σ̂2
v

. The solution is

µ̂r =
1

J

[
1

T

T∑
t=1

rt −

(
1

T

T∑
t=1

xt − µ̂x

)
F − βOLSH

1 + (θ̂ − θOLS)H
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−

(
1

T

T∑
t=1

xt−1 − µ̂x

)
βOLS(1 + θ̂H)− θOLSF

1 + (θ̂ − θOLS)H

]
(A.17)

β̂ =
βOLS + (θ̂ − θOLS)F

1 + (θ̂ − θOLS)H
− (θ̂ − θOLS)G

1 + (θ̂ − θOLS)H
µ̂r (A.18)

σ̂uv
σ̂2
v

=
F − βOLSH

1 + (θ̂ − θOLS)H
− G

1 + (θ̂ − θOLS)H
µ̂r, (A.19)

where

J = 1− G

1 + (θ̂ − θOLS)H

[
1

T

T∑
t=1

xt − µ̂x − θOLS

(
1

T

T∑
t=1

xt−1 − µ̂x

)]
(A.20a)

F =

∑T
t=1 rtv̂t∑T
t=1 v̂

2
t

(A.20b)

G =

∑T
t=1 v̂t∑T
t=1 v̂

2
t

(A.20c)

H =

∑T
t=1(xt−1 − µ̂x)v̂t∑T

t=1 v̂
2
t

. (A.20d)

Expressions (A.17) and (A.18) provide the estimators for µr and β because

they depend only on the data and µ̂x and θ̂, which we have already expressed

in terms of the data. Finally, (A.19) gives the estimator the estimator of σuv

via (A.7), which further yields the estimator of σ2
u via (A.6).

A.2. Restricted maximum likelihood

We consider maximum likelihood estimation under the restriction β = 0. We

denote the restricted maximum likelihood estimate of parameter q as q̌. This

case turns out to be less tractable than the unrestricted case, and for this

reason, we fix the entries of the variance-covariance matrix Σ. We implement

the estimator in two stages; in the first stage we run OLS to find Σ under the

assumption of β = 0. In the second stage, we solve the equations that follow.
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Consider (A.1) with the restriction of β = 0. The first-order conditions are

as follows:

0 =
∂

∂θ
L = 2

[
θ

1− θ2
− θ (x0 − µx)2

σ2
v

− σuv
|Σ|

T∑
t=1

ut(µx − xt−1) +
σ2
u

|Σ|

T∑
t=1

vt(µx − xt−1)

]
(A.21a)

0 =
∂

∂µr
L = 2

[
− σ

2
v

|Σ|

T∑
t=1

ut +
σuv
|Σ|

T∑
t=1

vt

]
(A.21b)

0 =
∂

∂µx
L = 2

[
− 1− θ2

σ2
v

(x0 − µx) +
σ2
v

|Σ|

T∑
t=1

βut

− σuv
|Σ|

T∑
t=1

(βvt − (1− θ)ut)−
σ2
u

|Σ|

T∑
t=1

(1− θ)vt

]
(A.21c)

Define the residuals

ǔt = rt − µ̌r (A.22a)

v̌t = xt − µ̌x − θ̌(xt−1 − µ̌x). (A.22b)

We now outline the algebra that allows us to solve these first-order conditions.

Step 1: Express µ̌x and µ̌r in terms of θ̌ and the data.

The first-order condition (A.21b) gives

T∑
t=1

ǔt =
σuv
σ2
v

T∑
t=1

v̌t. (A.23)

Combining this with the first-order condition (A.21c) gives

T∑
t=1

v̌t =
(
1 + θ̌

)
(µ̌x − x0) , (A.24)
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which we can write as

µ̂x =

(
1 + θ̌

)
x0 +

∑T
t=1

(
xt − θ̌xt−1

)(
1 + θ̌

)
+
(
1− θ̌

)
T

. (A.25)

Combining (A.24) and (A.23) yields

µ̌r =
1

T

T∑
t=1

rt −
1

T

σuv
σ2
v

(
1 + θ̌

)
(µ̌x − x0) . (A.26)

Step 2: Solve for θ̌ in terms of the data.

Substituting (A.23), (A.24) and (A.26) into the first-order condition (A.21a)

gives

0 = σ2
v

θ̌

1− θ̌2
− θ̌(x0 − µ̌x)2 +

(
1 + θ̌

)
µ̌x (µ̌x − x0)

+
1

|Σ|

(
T∑
t=1

xt−1

)[
σ2
uv

T

(
1 + θ̌

)
(µ̌x − x0) + σ2

uσ
2
v

(
1− θ̌

)
µ̌x

]

+
1

|Σ|

[
σuvσ

2
v

T∑
t=1

xt−1

(
rt −

1

T

T∑
s=1

rs

)
− σ2

uσ
2
v

T∑
t=1

xt−1
(
xt − θ̌xt−1

)]
(A.27)

Here µ̌x is a function of only θ̌ and the data, so given σ2
u, σ

2
v and σuv the above

an equation for θ̌. Similarly to Appendix A, multiplying through by

(
(T + 1)− (T − 1)θ̌

)2 (
1− θ̌2

)
(A.28)

and carrying out the algebra gives a fifth-order polynomial in θ̌ where the

coefficients are determined by the sample. As for the exact ML estimator in

Appendix A, in lengthy experimentation and simulation runs we have always

found that this polynomial only has one root within the unit circle of the

complex plane and that this root is real. Therefore this root is a valid MLE

of θ. Given this solution for θ̌, (A.25) gives the estimator for µx and (A.26)

gives the estimator for µr.
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A.3. The multivariate case

Our model is

rt+1 − µr =
N∑
i=1

βi(xit − µxi) + ut+1

x1t+1 − µx1 = θ1(x1t − µx1) + v1t+1 (A.29)

...

xNt+1 − µxN = θN(xNt − µxN) + vNt+1

where, with vt = (v1t, . . . , vNt)
>, the vector (ut, v

>
t )> is Gaussian and iid over

time with covariance matrix

Σ =

 σ2
u σ>uv

σuv Σv

 . (A.30)

Let Σx denote the covariance matrix of the vector xt = (x1t, . . . , xNt)
>. Ele-

ment (i, j) of matrix Σx equals

σij
1− θiθj

, (A.31)

where σij is element (i, j) of matrix Σv. Let µx denote the vector (µx1, . . . , µxN)>,

β denote the vector (β1, . . . , βN)>, θ denote the vector (θ1, . . . , θN)>, and Θ

denote the N ×N diagonal matrix with the vector θ as its diagonal.

We denote the maximum likelihood estimate of parameter q as q̆. Here we

derive the estimators for µr, µx, β, and θ, taking σ2
u, Σv, and σuv as given.

Maximizing the exact log likelihood function is the same as minimizing the

function L:

L(β, θ, µr, µx) = log |Σx|+ (x0 − µx)>Σ−1x (x0 − µx)

+ T log(|Σ|) +
T∑
t=1

(
ut v>t

)
Σ−1

 ut

vt

 (A.32)

where |Q| is notation for the determinant of matrix Q.
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Let ei denote a column vector with one as its ith element and zeros every-

where else. The first-order conditions arise from setting the partial derivatives

of the likelihood function to zero.

0 =
∂

∂βi
L ⇒ 0 =

σ2
v

|Σ|

T∑
t=1

(µx − xit−1)
(
ut − σ>uvΣ−1v vt

)
(A.33a)

0 =
∂

∂θi
L ⇒ 0 = tr

(
Σ−1x

∂

∂θi
Σx

)
− (x0 − µx)>Σ−1x

(
∂

∂θi
Σx

)
Σ−1x (x0 − µx)

+ 2
T∑
t=1

(xit−1 − µxi)e>i

[
1

σ2
ε

Σ−1v σuvut

−
(

Σ−1v +
1

σ2
ε

Σ−1v σuvσ
>
uvΣ

−1
v

)
vt

]
(A.33b)

0 =
∂

∂µr
L ⇒

T∑
t=1

ut = σ>uvΣ
−1
v

T∑
t=1

vt (A.33c)

0 =
∂

∂µxi
L ⇒ e>i Σ−1x (x0 − µx) = (θi − 1)

(
0 e>i

)
Σ−1

 ∑T
t=1 ut∑T
t=1 vt

 ,

(A.33d)

where

σ2
ε = σ2

u − σ>uvΣ−1v σuv. (A.34)

Define the residuals

ŭt = rt − µ̆r − β̆> (xt−1 − µ̆x) (A.35a)

v̆t = xt − µ̆x − Θ̆ (xt−1 − µ̆x) . (A.35b)

We now outline the algebra that allows us to solve these first-order conditions.
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Step 1: Express µ̆x in terms of Θ̆ and the data.

Stacking the first-order conditions for µxi in a vector, we get, after carrying

out the algebra,

(Θ̆− I)Σ−1v

[
T∑
t=1

v̆t +
1

σ2
ε

σuv

(
σ>uvΣ

−1
v

T∑
t=1

v̆t −
T∑
t=1

ŭt

)]
= Σ−1v (x0 − µ̆x) .

(A.36)

Using (A.33c) we can simplify this to(
Θ̆− I

)
Σ−1v

T∑
t=1

v̆t = Σ̆−1x (x0 − µ̆x) , (A.37)

where Σ̆x is a matrix with
σij

1− θ̆iθ̆j
(A.38)

as its (i, j)th element. We can write (A.37) as

µ̆x =
[
I + T Σ̆x

(
Θ̆− I

)
Σ−1v

(
Θ̆− I

)]−1
×

[
x0 − Σ̆x

(
Θ̆− I

)
Σ−1v

(
T∑
t=1

xt − Θ̆
T∑
t=1

xt−1

)]
. (A.39)

Given σ2
u, Σv, and σuv, this equation expresses µ̆x in terms of the data and Θ̆.

Step 2: Solve for θ̆ in terms of the data. This also gives µ̆x in terms of the

data.

Using (A.33a) in (A.33b) gives

0 = tr

(
Σ̆−1x

∂

∂θi
Σ̆x

)
− (x0 − µx)>Σ̆−1x

(
∂

∂θi
Σ̆x

)
Σ̆−1x (x0 − µx)

− 2e>i Σ−1v

T∑
t=1

(xit−1 − µxi)v̆t, (A.40)

for i = 1, . . . , N . From (A.39) we have µ̆x in terms of θ̆ and the data, so if

we combine (A.39) and (A.40) we get a system of N nonlinear equations for

θ̆1, . . . , θ̆N . Given the solution of this system for θ̆1, . . . , θ̆N , (A.39) gives the

estimator for µx.
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Step 3: Solve for µ̆r and β̆ in terms of the data.

The first-order condition (A.33c) gives

µ̆r =
1

T

T∑
t=1

rt − σ>uvΣ−1v
1

T

T∑
t=1

v̆t − β̆>
(

1

T

T∑
t=1

xt−1 − µ̆x

)
. (A.41)

Using this in (A.33a) and carrying out the algebra we get[
1

T

T∑
t=1

xit−1rt −

(
1

T

T∑
t=1

xit−1

)(
1

T

T∑
t=1

rt

)]

− β̆>
[

1

T

T∑
t=1

xit−1xt−1 −

(
1

T

T∑
t=1

xit−1

)(
1

T

T∑
t=1

xt−1

)]

= σ>uvΣ
−1
v

{
1

T

T∑
t=1

xit−1xt −

(
1

T

T∑
t=1

xit−1

)(
1

T

T∑
t=1

xt

)

− Θ̆

[
1

T

T∑
t=1

xit−1xt−1 −

(
1

T

T∑
t=1

xit−1

)(
1

T

T∑
t=1

xt−1

)]}
, (A.42)

for i = 1, . . . , N . Recall that we have solved for Θ̆ in terms of the data,

so (A.42) constitutes a system of linear equations in β̆1, . . . , β̆N . Given the

solution of this system for β̆, (A.41) gives the estimator for µr.

A.4. Asymptotic standard errors

Here we derive asymptotic standard errors for our maximum likelihood esti-

mates using the methodology described in Hayashi (2000). Let q denote the

vector

(µr, µx, β, θ, σ
2
u, σ

2
v , σuv)

>, (A.43)

and let st denote the score vector for observation t. In addition, let

p (x0|q) =
(
2πσ2

x

)− 1
2 exp

{
−1

2

(
x0 − µx
σx

)2
}

(A.44)

denote the likelihood of the initial draw x0, and let

p (ut, vt|q) = |2πΣ|−
1
2 exp

{
−1

2

(
σ2
v

|Σ|
u2t − 2

σuv
|Σ|

utvt +
σ2
u

|Σ|
v2t

)}
(A.45)
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denote the likelihood of the shock vector (ut, vt)
>. We specify our objective

function as 1/T times our exact likelihood function,

1

T
log p (r1, . . . , rT ;x0, . . . , xT |q) =

1

T

T∑
t=1

[
log p (ut, vt|q) +

1

T
p (x0|q)

]
,

(A.46)

where the equality follows by independence of the shocks over t, and by writing

p (x0|q) =
∑T

t=1
1
T
p (x0|q). The score st is

st =
∂

∂q

[
log p (ut, vt|q) +

1

T
p (x0|q)

]
. (A.47)

We can see that the exact score is the conditional score ∂
∂q

log p (ut, vt|q) plus

the “correction” term ∂
∂q

1
T
p (x0|q).

The usual approach of obtaining the asymptotic covariance matrix is to

derive a “sandwich estimator.” Hayashi (2000, section 7.3) shows that, under

maximum likelihood, the sandwich estimator simplifies due to the informa-

tion matrix equality. One particularly convenient estimator of the asymptotic

covariance matrix is

Avar (q̂) =

[
1

T

T∑
t=1

st s
>
t

]−1
. (A.48)

Hayashi notes that this estimator often has better finite-sample performance

than the more complicated sandwich estimator, due the ease with which it is

computed. The standard errors for our parameter estimates are given by the

square root of the diagonal elements of Avar (q̂) divided by
√
T .

It is straightforward to adopt the method above for restricted MLE; we set

β = 0 and we drop the element of the score corresponding to β.

13



B. Further properties of maximum likelihood

B.1. The equity premium in levels

In this section we discuss how to translate our results for log returns into

levels. For simplicity, assume that the log returns log (1 +Rt) are normally

distributed. Then

E[Rt] = E
[
elog(1+Rt)

]
− 1 = eE[log(1+Rt)]+

1
2
Var(log(1+Rt)) − 1. (B.1)

Using the definition of the excess log return, E [log(1 +Rt)] = E[rt]+E[log(1+

Rf
t )], so the above implies that

E[Rt −Rf
t ] = eE[rt]eE[log(1+Rf

t )]+ 1
2
Var(log(1+Rt)) − 1− E[Rf

t ]. (B.2)

Our maximum likelihood method provides an estimate of E[rt] and all other

quantities above can be easily calculated using sample moments. Taking the

sample mean of the series Rt − Rf
t for the period 1953-2011 yields a risk

premium that is 0.530% per month, or 6.37% per annum. On the other hand,

using the above calculation and our maximum likelihood estimate of the mean

of rt gives an estimate of E[Rt − Rf
t ] of 0.422% per month, or 5.06% per

annum.1 Thus our estimate of the risk premium in return levels is 131 basis

lower than taking the sample average, in line with our results for log returns.

B.2. Comparison with Fama and French (2002)

Fama and French (2002) propose an alternative estimator of the equity pre-

mium. Using the return identity:

Rt =
Dt

Pt−1
+
Pt − Pt−1
Pt−1

, (B.3)

1In the data, in monthly terms for the period 1953-2011, the sample mean of Rt is

0.918%, the sample mean of Rf
t is 0.387%, the sample mean of log(1 + Rf

t ) is 0.386% and

the variance of log(1 +Rt) is 0.194%.
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and taking the expectation:

E[Rt] = E

[
Dt

Pt−1

]
+ E

[
Pt − Pt−1
Pt−1

]
, (B.4)

they propose replacing the capital gain term E[(Pt−Pt−1)/Pt−1] with dividend

growth E[(Dt −Dt−1)/Dt−1]. They argue that, because prices and dividends

are cointegrated, their mean growth rates should be the same. They find that

the resulting expected return is less than half the sample average, namely

4.74% rather than 9.62%.

While their argument seems intuitive, a closer look reveals a problem. Let

Xt = Dt/Pt, and let lower-case letters denote natural logs. Then

dt+1 − dt = xt+1 − xt + pt+1 − pt. (B.5)

Because Xt is stationary, E[xt+1 − xt] = 0 and it is indeed the case that

E[dt+1 − dt] = E[pt+1 − pt]. (B.6)

However, exponentiating (B.5) and subtracting 1 implies

Dt+1 −Dt

Dt

=
Xt+1

Xt

Pt+1

Pt
− 1. (B.7)

That is, stationarity of Xt implies (B.6), but not E[(Pt−Pt−1)/Pt−1] = E[(Dt−
Dt−1)/Dt−1]. Namely it does not imply that the average level growth rates are

equal.

For expected growth rates to be equal in levels, (B.7) shows that it must

be the case that E
[
Xt+1

Xt

Pt+1

Pt

]
= E

[
Pt+1

Pt

]
, which is unlikely to hold as long

as Xt is variable (it follows from E[log(Xt+1/Xt)] = 0 and Jensen’s inequality

that E[Xt+1/Xt] > 1).2 This implies that the estimator proposed by Fama

2Under the assumption of lognormality, a necessary and sufficient condition for equality

of expected (level) growth rates is that the variances of the log growth rates are equal:

Var(dt+1 − dt) = Var(pt+1 − pt). (B.8)
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and French (2002) is inconsistent for the equity premium. Nevertheless, the

intuition we develop is related to theirs: the sample average of realized returns

is exceeds the true mean because shocks to discount rates (proxied for by the

dividend-price ratio) were negative on average over the sample period.

C. Properties of the time series of returns un-

der the benchmark data generating process

C.1. Mean reversion in returns

Consider the effect of a series of shocks on excess returns (in this subsection,

we will assume, for expositional reasons, that the mean excess return is zero):

rt = βxt−1 + ut

rt+1 = βθxt−1 + βvt + ut+1 (C.1)

rt+2 = βθ2xt−1 + βθvt + βvt+1 + ut+2

and so on. Thus, for k ≥ 1, the autocovariance of returns is given by

Cov (rt, rt+k) = θkβ2Var(xt) + θk−1βσuv, (C.2)

where Var(xt) = σ2
v/(1 − θ2). An increase in θ increases the variance of the

predictor variable. In the absence of covariance between the shocks u and

v, this effect would increase the autocovariance of returns through the term

To see this, note that (B.6), combined with log-normality, implies that

E

[
Dt+1

Dt

]
e−

1
2Var(dt+1−dt) = E

[
Pt+1

Pt

]
e−

1
2Var(pt+1−pt). (B.9)

If (B.8) holds, then the second terms on the right and left hand side cancel, yielding the

result. This is a knife-edge result in which the variance of the log dividend-price ratio xt

and the covariance of xt with log price changes cancel out. However, it is well-known that

prices are more volatile than dividends (Shiller, 1981).
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θkβ2Var(xt). However, because u and v are negatively correlated, the second

term in (C.2), θk−1βσuv is also negative. We show below that this second term

dominates the first for all positive values of θ up until a critical value, at which

point the first comes to dominate.

Assume θ > 0, β > 0 and σuv < 0, as we estimate the case to be in our

data. Substituting in Var(xt) = σ2
v/(1− θ2), multiplying by (1− θ2) > 0 and

dividing through by θk−1β > 0 shows that the autocovariance of returns is

negative whenever

−σuvθ2 + βσ2
vθ + σuv < 0. (C.3)

The left-hand side is a quadratic polynomial in θ with a positive leading coeffi-

cient. As a result, whenever this polynomial has two real roots in θ, the entire

expression is negative if and only if θ lies in between those roots. Indeed, the

polynomial has two real roots because its discriminant equals β2σ4
v +4σ2

uv > 0.

Let θ1 be the smaller of the two roots and let θ2 be the larger one, that is,

θ2 =
−βσ2

v +
√
β2σ4

v + 4σ2
uv

−2σuv
. (C.4)

Under our assumptions it is straightforward to prove that θ1 < −1 and −1 <

θ2 < 1, so the only possible change of sign of the return autocovariance happens

at θ2. In particular, Cov (rt, rt+k) < 0 whenever θ < θ2 and Cov (rt, rt+k) > 0

whenever θ > θ2.

C.2. The variance of the sample mean return

By definition

1

T

T∑
t=1

rt = µr + β

(
1

T

T∑
t=1

xt−1 − µx

)
+

1

T

T∑
t=1

ut, (C.5)

thus

Var

(
1

T

T∑
t=1

rt

)
= β2Var

(
1

T

T∑
t=1

xt−1

)
+ Var

(
1

T

T∑
t=1

ut

)
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+ 2βCov

(
1

T

T∑
t=1

xt−1,
1

T

T∑
t=1

ut

)
. (C.6)

The variance of the average predictor is available and it depends on θ. The

variance of the average residual does not depend on θ. Finally, the covariance

of the average predictor and the average predictor depends on θ and ρuv. It is

not a trivial quantity because even though ut is uncorrelated with xt−1, it is

correlated with xt via vt whenever ρuv 6= 0 and thus it is also correlated with

xt+1, xt+2, . . . , xT−1 whenever θ 6= 0. In particular,

Var

(
1

T

T∑
t=1

ut

)
= σ2

u

1

T
, (C.7)

Var

(
1

T

T∑
t=1

xt−1

)
=

σ2
v

1− θ2

[
1

T

(
1 + 2

θ

1− θ

)
+

2

T 2

θ(θT − 1)

(1− θ)2

]
,

(C.8)

Cov

(
1

T

T∑
t=1

xt−1,
1

T

T∑
t=1

ut

)
= σuv

[
1

T

1

1− θ
+

1

T 2

θT − 1

(1− θ)2

]
, (C.9)

so that

Var

(
1

T

T∑
t=1

rt

)
=

1

T

(
σ2
u + 2β

σuv
1− θ

+ β2 σ2
v

1− θ2

)
− 1

T 2
2β

1− θT

(1− θ)2

(
βθ

σ2
v

1− θ2
+ σuv

)
. (C.10)

It follows that

Var

(
1

T

T∑
t=1

rt

)
=

1

T

(
σ2
u + β2 σ2

v

1− θ2
+ 2β

σuv
1− θ

)
+O

(
1

T 2

)
. (C.11)

The term σ2
u + β2σ2

v/(1 − θ2) measures the contribution of the return shocks

and the predictor to the variability of the sample-mean return. The term

βσuv/(1− θ) measures the contribution of the covariance of the return shocks

and the predictor shocks to the variability of the sample-mean return. The

former term increases as θ increases, which says that the sample-mean return
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is more variable because the predictor is more variable. At the same time, the

latter term becomes more negative as θ increases, so that in fact the overall

variability of the sample-mean return can decrease.
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D. Omitted tables and figures

Table D.1. Small-sample distribution of estimators: t-distributed shocks

True Value Method Mean Std. Dev. 5 % 50 % 95 %

µr 0.322
Sample 0.323 0.138 0.098 0.320 0.552
MLE 0.322 0.072 0.204 0.322 0.440

µx −3.504
Sample −3.504 0.578 −4.454 −3.498 −2.543
MLE −3.504 0.549 −4.404 −3.498 −2.589

β 0.090
OLS 0.746 0.634 −0.007 0.601 1.947
MLE 0.683 0.594 0.040 0.533 1.836

θ 0.998
OLS 0.991 0.007 0.978 0.993 0.999
MLE 0.992 0.006 0.980 0.993 0.998

σu 4.430
OLS 4.419 0.185 4.136 4.411 4.727
MLE 4.419 0.185 4.136 4.410 4.727

σv 0.046
OLS 0.046 0.002 0.043 0.045 0.049
MLE 0.046 0.002 0.043 0.045 0.049

ρuv −0.961
OLS −0.961 0.004 −0.967 −0.961 −0.954
MLE −0.961 0.004 −0.967 −0.961 −0.954

Notes: We simulate 10,000 monthly samples from

rt+1 − µr = β(xt − µx) + ut+1

xt+1 − µx = θ(xt − µx) + vt+1,

where [ut, vt] has a bivariate t-distribution. The sample length is as in postwar data. Param-
eters are set to their maximum likelihood estimates (assuming normally distributed shocks)
where β and θ are adjusted for bias. We conduct benchmark maximum likelihood estimation
(MLE) for each sample path (this assumes normality and is therefore mis-specified). As a
comparison, we take sample means to estimate µr and µx (Sample) and use ordinary least
squares to estimate the slope coefficients and the variance and correlations of the residuals
(OLS). The table reports the means, standard deviations, and 5th, 50th, and 95th percentile
values across simulations. We set the degrees of freedom for the t-distribution to 5.96. This
matches the average kurtosis of the estimated residuals for returns and the dividend-price
ratio, and takes into account that the kurtosis is downward biased.
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Table D.2. Small-sample distribution of estimators: Calibration to OLS estimates and

sample means

True Value Method Mean Std. Dev. 5 % 50 % 95 %

µr 0.433
Sample 0.432 0.082 0.297 0.431 0.565
MLE 0.432 0.049 0.352 0.432 0.513

µx −3.545
Sample −3.550 0.192 −3.865 −3.551 −3.232
MLE −3.550 0.184 −3.854 −3.552 −3.242

β 0.828
OLS 1.414 0.715 0.512 1.276 2.801
MLE 1.372 0.689 0.515 1.241 2.675

θ 0.992
OLS 0.986 0.007 0.971 0.987 0.995
MLE 0.986 0.007 0.972 0.988 0.995

σu 4.414
OLS 4.410 0.118 4.215 4.410 4.603
MLE 4.408 0.118 4.214 4.408 4.601

σv 0.046
OLS 0.046 0.001 0.044 0.046 0.048
MLE 0.046 0.001 0.044 0.046 0.048

ρuv −0.961
OLS −0.961 0.003 −0.965 −0.961 −0.956
MLE −0.961 0.003 −0.965 −0.961 −0.956

Notes: We simulate 10,000 monthly samples from

rt+1 − µr = β(xt − µx) + ut+1

xt+1 − µx = θ(xt − µx) + vt+1,

where ut and vt are Gaussian and iid over time with standard deviations σu and σv and
correlation ρuv. The sample length is as in postwar data. Parameters µr and µx are set to
their sample averages, and parameters β, θ and variances and correlations are set to their
OLS estimates. We conduct maximum likelihood estimation (MLE) for each sample path.
We also report sample averages for µr and µx (Sample) and OLS estimates for the remaining
parameters.
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Table D.3. Small-sample distribution of estimators: calibration to 1927–2011 sample

True Value Method Mean Std. Dev. 5 % 50 % 95 %

µr 0.391
Sample 0.390 0.080 0.258 0.389 0.522
MLE 0.391 0.058 0.295 0.390 0.485

µx −3.383
Sample −3.383 0.196 −3.710 −3.385 −3.063
MLE −3.384 0.190 −3.701 −3.384 −3.074

β 0.650
OLS 1.039 0.547 0.336 0.941 2.063
MLE 1.018 0.530 0.345 0.923 2.007

θ 0.991
OLS 0.987 0.006 0.976 0.988 0.995
MLE 0.987 0.006 0.977 0.989 0.994

σu 5.464
OLS 5.460 0.119 5.265 5.459 5.655
MLE 5.458 0.119 5.263 5.458 5.653

σv 0.057
OLS 0.057 0.001 0.055 0.057 0.059
MLE 0.057 0.001 0.055 0.057 0.059

ρuv −0.953
OLS −0.953 0.003 −0.958 −0.953 −0.948
MLE −0.953 0.003 −0.958 −0.953 −0.948

Notes: We simulate 10,000 monthly samples from

rt+1 − µr = β(xt − µx) + ut+1

xt+1 − µx = θ(xt − µx) + vt+1,

where ut and vt are Gaussian and iid over time with standard deviations σu and σv and
correlation ρuv. The sample length is set to match the 1927–2011 sample, and parameters are
set to their maximum likelihood estimates over this period. We conduct maximum likelihood
estimation (MLE) for each sample path. As a comparison, we take sample means to estimate
µr and µx (Sample) and use ordinary least squares to estimate the slope coefficients and
the variance and correlations of the residuals (OLS). The table reports the means, standard
deviations, and 5th, 50th, and 95th percentile values across simulations.
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Table D.4. Small-sample distribution of MLE0

True Value Method Mean Std. Dev. 5 % 50 % 95%

µr 0.312
Sample 0.312 0.169 0.040 0.309 0.591
MLE 0.312 0.090 0.164 0.312 0.458
MLE0 0.312 0.089 0.164 0.312 0.460

µx −3.437
Sample −3.439 1.078 −5.226 −3.450 −1.675
MLE −3.436 1.051 −5.172 −3.438 −1.713
MLE0 −3.436 1.044 −5.156 −3.435 −1.718

β 0
OLS 0.678 0.601 −0.048 0.550 1.845
MLE 0.602 0.558 0.012 0.450 1.694
MLE0

θ 0.9992
OLS 0.9920 0.0063 0.9798 0.9933 0.9996
MLE 0.9928 0.0058 0.9812 0.9944 0.9988
MLE0 0.9982 0.0012 0.9959 0.9985 0.9995

Notes: We simulate 10,000 monthly data samples from

rt+1 − µr = ut+1

xt+1 − µx = θ(xt − µx) + vt+1.

where ut and vt are Gaussian and iid over time with correlation ρuv. The sample length is as
in postwar data. The parameters are set to their restricted maximum likelihood estimates
in Table 1. For each sample path, we compute sample averages for µr and µx (Sample),
OLS estimates of β and θ (OLS), unrestricted maximum likelihood (MLE, mis-specified in
this case), and restricted maximum likelihood (MLE0, correctly specified).
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Table D.5. Estimates using multiple predictors

returns d/p dfsp tmsp

Panel A: ML estimates

µr 0.338
µxi −3.493 0.903 −0.871
βi 0.893 −0.524 −0.143
θi 0.994 0.969 0.972
RMSE 4.569

Panel B: Sample and OLS estimates

µr 0.441
µxi

−3.548 0.904 −0.871
βi 1.239 −0.157 −0.480
θi 0.991 0.968 0.973
RMSE 4.581

Panel C: Covariance matrix

σ 4.391 0.046 0.101 0.246
ρui −0.957 −0.058 −0.115
ρ1i 0.067 0.133
ρ2i −0.130

Notes: Estimates of

rt+1 − µr =

N∑
i=1

βi(xit − µxi
) + ut+1

x1,t+1 − µx1
= θ1(x1t − µx1) + v1,t+1

...

xN,t+1 − µxN
= θN (xNt − µxN ) + vN,t+1

where ut and v1t, . . . , vNt are Gaussian and iid over time with covariance matrix

Σ =


σ2
u ρu1σuσ1 . . . ρuNσuσN

ρu1σuσ1 σ2
1 . . . ρ1Nσ1σN

...
...

. . .

ρuNσuσN ρ1Nσ1σN σ2
N

 ,
where rt is the continuously-compounded CRSP return minus the 30-day Treasury Bill
return, x1t is the log dividend-price ratio, x2t is the default spread, and x3t is the term
spread. Data are monthly, April 1953 – December 2011. Means and standard deviations
of returns are in percentage terms. In Panel A, parameters are estimated using maximum
likelihood. In Panel B, µr and µxi

are estimated by sample averages, and βi and θi are
estimated by ordinary least squares. Panel C gives the standard deviations of the shocks
(top row) and the correlations between the shocks estimated using OLS residuals. Variables
are the dividend-price ratio (d/p), the continuously-compounded yield of BAA-rated bonds
minus the continuously-compounded yield of AAA rated bonds (dfsp), and the continuously-
compounded yield of ten-year treasury bonds minus the continuously-compounded yield of
one-year treasury bonds (tmsp).
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Table D.6. Annual estimates using repurchase-adjusted dividend-price ratios

Treasury-stock adjusted d/p Cash-flow adjusted d/p
OLS Sample MLE MLE0 OLS Sample MLE MLE0

µr 5.718 4.252 4.092 5.718 4.806 4.558
µx −3.352 −3.334 −3.318 −3.258 −3.240 −3.221
β 19.556 17.221 21.343 19.868
θ 0.897 0.923 0.977 0.865 0.883 0.958
σu 16.164 16.185 17.195 16.167 16.113 17.195
σv 0.125 0.126 0.125 0.130 0.130 0.130
ρuv −0.700 −0.708 −0.658 −0.668 −0.674 −0.628

RMSE 17.233 16.470 16.598 17.233 16.581 16.606
p(∆MSE) 0.021 0.102 0.023 0.094

Notes: Estimates of

rt+1 − µr = β(xt − µx) + ut+1

xt+1 − µx = θ(xt − µx) + vt+1,

where rt is the continuously-compounded CRSP return minus the annual Treasury Bill
return and xt is the logarithm of the dividend yield, adjusted for repurchases. Two such
adjusted dividend-price ratios are considered: the cash-flow based yield (cfby) and the
Treasury-stock based yield (tsby). Shocks ut and vt are mean zero and iid over time with
standard deviations σu and σv and correlation ρuv. Return data and dividend-yield data
are annual, 1953–2003. Means and standard deviations of returns are in percentage terms.
Under the OLS columns, parameters are estimated by ordinary least squares, with σu, σv,
and ρuv estimated from the residuals. In the Sample column, µr is the average excess return
over the sample and µx is the average of the log dividend-price ratio. In the MLE column
parameters are estimated using maximum likelihood. In the MLE0 columns, parameters
are estimated using maximum likelihood assuming β = 0. RMSE denotes the root-mean-
squared error from monthly out-of-sample return forecasts.
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Table D.7. Estimation of a predictive regression with heteroskedasticity

Panel A: Panel B: Panel C:
Means and coefficients Volatility parameters Covariance matrix

µr 0.335 ωu 4.763 σ∗
u 4.351

µx −3.569 αu 0.029 σ∗
v 0.045

β 0.688 δu 0.719 ρuv −0.959
θ 0.993 ωv 1.855× 10−4

αv 0.016
δv 0.892

Notes: We estimate the bivariate process

rt+1 − µr = β(xt − µx) + ut+1

xt+1 − µx = θ(xt − µx) + vt+1,

where, conditional on information available up to and including time t,[
ut+1

vt+1

]
∼ N

(
0,

[
σ2
u,t+1 ρuvσu,t+1σv,t+1

ρuvσu,t+1σv,t+1 σ2
v,t+1

])
,

and

σ2
u,t+1 = ωu + αuu

2
t + δuσ

2
u,t,

σ2
v,t+1 = ωv + αvv

2
t + δvσ

2
v,t.

Here, rt is the continuously compounded return on the value-weighted CRSP portfolio in
excess of the return on the 30-day Treasury Bill and xt is the log of the dividend-price ratio.
Starred parameters are implied by other estimates, namely σ∗

u =
√
ωu/(1− αu − δu) and

σ∗
v =

√
ωv/(1− αv − δv). Parameters are estimated using a two-stage process by which

the means and coefficients (Panel A) are treated as fixed and the volatility parameters
(Panels B and C) are estimated using conditional maximum likelihood in the first stage,
and the volatility parameters are treated as fixed, while the means and coefficients are re-
estimated in the second stage. Data are monthly, from January 1953 to December 2011.
Means and standard deviations of returns are in percentage terms.

26



Table D.8. Small-sample distribution of estimators when the dividend-price ratio follows a

random walk

True Value Method Mean Std. Dev. 5 % 50 % 95 %

µr 0.322
Sample 0.325 0.166 0.050 0.327 0.599
MLE 0.322 0.047 0.246 0.323 0.401

µx −3.504
Sample −2.988 0.699 −4.130 −2.996 −1.845
MLE −2.986 0.637 −4.006 −2.997 −1.971

θ 0.993
OLS 0.992 0.006 0.980 0.994 1.000
MLE 0.993 0.006 0.981 0.995 0.999

σu 4.416
OLS 4.413 0.117 4.221 4.414 4.605
MLE 4.415 0.117 4.223 4.417 4.607

σv 0.046
OLS 0.046 0.001 0.044 0.046 0.048
MLE 0.046 0.001 0.044 0.046 0.048

ρuv −0.961
OLS −0.962 0.003 −0.967 −0.962 −0.957
MLE −0.962 0.003 −0.967 −0.962 −0.957

Notes: We simulate 10,000 monthly data samples from

rt+1 − µr = ut+1

xt+1 = xt + vt+1

where ut and vt are Gaussian and iid over time with correlation ρuv. For each sample path
we conduct (mis-specified) maximum likelihood estimation (MLE) of

rt+1 − µr = β(xt − µx) + ut+1

xt+1 − µx = θ(xt − µx) + vt+1.

For comparison, we take sample means to estimate µr and µx (Sample) and use ordinary
least squares to estimate the slope coefficients and the variance and correlations of the
residuals (OLS). The table reports the means, standard deviations, and 5th, 50th, and 95th
percentile values across simulations.
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Table D.9. Small-sample distribution of estimators when the dividend-price ratio has a time

trend

True Value Method Mean Std. Dev. 5 % 50 % 95 %

µr 0.322
Sample 0.322 0.168 0.044 0.321 0.599
MLE 0.280 0.145 0.044 0.280 0.516

µx −3.504
Sample −3.682 0.234 −4.066 −3.682 −3.292
MLE −3.663 0.223 −4.028 −3.661 −3.296

β 0
OLS 0.590 0.684 −0.255 0.460 1.880
MLE 0.514 0.660 −0.270 0.375 1.756

θ 0.993
OLS 0.987 0.007 0.974 0.988 0.996
MLE 0.988 0.007 0.975 0.989 0.996

σu 4.416
OLS 4.410 0.117 4.219 4.410 4.602
MLE 4.409 0.117 4.218 4.410 4.601

σv 0.046
OLS 0.046 0.001 0.044 0.046 0.048
MLE 0.046 0.001 0.044 0.046 0.048

ρuv −0.961
OLS −0.961 0.003 −0.965 −0.961 −0.956
MLE −0.961 0.003 −0.965 −0.961 −0.956

Notes: We simulate 10,000 monthly data samples from

rt+1 − µr = ut+1

xt+1 − µx = ∆ + θ(xt − µx) + vt+1

where ut and vt are Gaussian and iid over time with correlation ρuv. We set µr, µx, θ,
σu, σv and ρuv to their benchmark maximum likelihood estimates (Table 1) and ∆ to the

mean residual (1/T )
∑T

t=1 v̂t = −0.14868. For each sample path we conduct (mis-specified)
maximum likelihood estimation (MLE) of

rt+1 − µr = β(xt − µx) + ut+1

xt+1 − µx = θ(xt − µx) + vt+1.

For comparison, we take sample means to estimate µr and µx (Sample) and use ordinary
least squares to estimate the slope coefficients and the variance and correlations of the
residuals (OLS). The table reports the means, standard deviations, and 5th, 50th, and 95th
percentile values across simulations.
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Fig. D.1. Histogram of maximum likelihood estimates of θ, the autocorrelation of the

dividend-price ratio from simulated data. We simulate 10,000 monthly data samples from

(1) with length and parameters as in the postwar data series.
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Fig. D.2. We simulate 10,000 monthly data samples from (1) with length and parameters as

in the postwar data series. The figure shows the joint distribution of the predictability term

β̂ 1
T

∑T
t=1(xt−1 − µ̂x) and the correlated shock term 1

T

∑T
t=1 ût that sum to the difference

between the maximum likelihood estimate and the sample mean.
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Fig. D.3. For each month, beginning in January 1953, we estimate the mean of the dividend-

price ratio using maximum likelihood (MLE), maximum likelihood with the restriction β = 0

(MLE0), and the sample mean (Sample), using data from January 1953 up until that month.
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Fig. D.4. For each month, beginning in January 1953, we estimate the coefficient of pre-

dictability (β) using maximum likelihood (MLE), and Ordinary Least Squares (OLS), using

data from January 1953 up until that month. For our restricted maximum likelihood method

(MLE0), β = 0 by assumption.
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Fig. D.5. For each month, beginning in January 1953, we estimate the autocorrelation

coefficient of the dividend-price ratio using maximum likelihood (MLE), maximum likelihood

with the restriction β = 0 (MLE0), and Ordinary Least Squares (OLS), using data from

January 1953 up until that month.
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