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This online appendix presents additional results with regard to the performance of the model

and discusses the model specification tests used in the paper. Section 1 provides basic evidence

of performance based on ROC curves. Section 2 illustrates differences between three specifications

of interest, namely constant relative risk aversion (CRRA), constant aversion to state uncertainty

(CASU) and beliefs-dependent risk aversion (BDRA), in their ability to reproduce empirical prop-

erties of the equity premium and the yield curve. Section 3 examines the robustness of parameter

estimates with respect to moment conditions employed in the estimation procedure. Section 4

carries out specification tests for the three alternatives under consideration as well as for a unified

specification containing all alternatives as special cases.

1 Model as predictor of recessions: ROC curve

The first element suggesting a good fit of the model with BDRA to moments that were not targeted

in the GMM estimation is the evolution of the conditional probability of the bad state (p2t). The

trajectory of this conditional probability depends on the estimates of the transition matrix Λ, the

covariance matrix and the drifts of the three state variables, namely consumption, dividend and

unemployment rate. Figure 1 suggests that p2t correctly identifies the recession periods measured

by the NBER.

To formally gauge the ability of the model to identify the recession phases, we use a standard

tool for diagnostic test called the Relative Operating Characteristic (ROC) curve.1 The ROC curve

1ROC curves are widely used to evaluate diagnostic decision making in medicine, radiology, signal detection, data
mining and psychology.



measures the sensitivity with respect to a diagnostic threshold, of the True Positive Rate (TPR),

which is the rate of correct diagnostic, versus the False Positive Rate (FPR), which is the rate

of incorrect diagnostic. It plots power (one minus the probability of a type II error) against the

probability of a type I error. The type I error is to accept H1 when H0 is true. The type II error

is to accept H0 when H1 is true. In our context, the two rates pertain to recession diagnostic and

are calculated as follows. Fix a threshold level c P r0, 1s. The TPR is the number of quarters in

which p2t is above the threshold c and the economy is in recession divided by the total number of

quarters in which the economy is in recession (rate of correct recession diagnostic). The FPR is the

number of quarters in which the recession probability is above the threshold c and the economy is

not in recession divided by the total number of quarters in which the economy is not in recession

(rate of incorrect recession diagnostic).

We perform these calculations for all values of c P r0, 1s and plot the resulting ROC curve

in Figure 1. This two-dimensional figure shows the relation between the TPR (y-axis) and the

FPR (x-axis) for all levels of c P r0, 1s. The ROC curve is seen to diverge significantly from the 45

degree line in the north-west direction. This divergence indicates that the model is a good recession

diagnostic tool for all threshold levels c.

2 Model comparison: equity premium and yields

This section provides further evidence of the incremental performance of the model with beliefs-

dependent risk aversion (BDRA) in comparison to (i) the model with constant relative risk aversion

and constant aversion to state uncertainty (CASU) and (ii) the model with constant relative risk

aversion (CRRA).

Figure 2 shows the trajectories of the equity premium for the three specifications examined. In

the model with BDRA, the equity premium displays the countercyclical behavior found in the data

(see Campbell and Cochrane (1999) and Melino and Yang (2003)). With CASU, it peaks during

booms and also takes negative values. With CRRA, the equity premium remains nearly flat and

close to zero. Among the three specification, BDRA is best at capturing empirical properties of

the equity premium. Figure 3 shows the time series of the 10-year yield, calculated as described

in Section 4.1.4, and the corresponding trajectories for the three model specifications. The models
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Figure 1: Relative Operating Characteristic (ROC) curve for recession diagnostic. The model
implied conditional probability of the bad state is used as a diagnostic for a recession quarter as
identified by the NBER.
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Figure 2: The plots compares the risk premium trajectories for the BDRA (red), CRRA (magenta)
and CASU (green) model. Parameters estimates are given in Table 6 for CRRA and Table 7 for
CASU. BDRA parameters are given in the paper in Table 2. Conditional probabilities are updated
using innovations from Consumption, Dividend, and Unemployment time series.
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Figure 3: The plots compares the 10-year real yield trajectory for the data (blue), BDRA (red),
CASU (green) and CRRA (magenta). Parameters estimates are given in Table 2 in the paper
(BDRA), Table 6 (CRRA) and Table 7 (CASU). Conditional probabilities are updated using in-
novations from Consumption, Dividend, and Unemployment time series. The 10-year yield data
series is computed using the methodology described in Section 4.1 in the paper.

with BDRA and CASU produce large fluctuations and fail to capture empirical properties of the

yield. The large amplitude of the yield is due to the larger variability of the marginal utility of

consumption in these settings, which is essential for capturing the dynamic behavior of the volatility

and the equity premium. The model with CRRA fares best, in the sense that it produces a more

stable yield, precisely because it cannot generate enough variability to explain the behavior of the

other two components of returns.

Figure 4 shows the time series of the volatility for the models with BDRA and CASU along with

the realized rolling volatility of the stock index. The BDRA specification captures the empirical

dynamics well, with sharp increases during recessions, whereas the CASU specification display

large increases in volatility also during expansion periods, in particular during the 90s and in the
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aftermath of the global financial crisis.

We run simple regressions to test the relationship between the realized rolling volatility and

the model implied volatilities. We find that only the BDRA specification produces a positive and

statistically significant slope coefficient. The estimation results are provided in Table 1

Table 1: This table provides regression estimates of the realized rolling volatility against model
implied volatility for the three different model specifications.

α t-stat β t-stat adj. R-squared

BDRA 0.1054 9.2422 0.114 2.069 0.1067

CASU 0.1365 7.7801 -0.023 -0.348 -0.003

CRRA 0.1339 12.115 -0.01397 -0.17959 -0.0043

Figure 6 shows the yield curve for the CASU model. In contrast to BDRA (Figure 5), the real

yield curve lies outside the 95% confidence interval around the average real yield curve estimate. In

contrast to the data and the BDRA specification, the real yield curve is slightly downward sloping.

Short term yields are too large and significantly different from the data. Figure 7 shows the yield

curve for the CRRA model. The yield curve in this specification is flat, and for short maturities

close to the boundary of the confidence interval. The BDRA model, in contrast, is able to capture

the level and the slope of the average yield curve.
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Figure 4: The plots compares the volatility trajectories for the data (blue), BDRA (red) and
CASU state uncertainty (green). Parameter estimates are given in Table 2 in the paper (BDRA)
and Table 7 (CASU). Conditional probabilities are updated using innovations from Consumption,
Dividend, and Unemployment time series. The 10-year yield data series is computed using the
methodology described in Section 4.1 in the paper.
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Figure 5: The plot shows the average yield curve in the model over the period 01/1999 to 01/2014
(red), over the period 01/1957 to 01/2014 (green) and in the data (blue) over the period 01/1999
to 01/2014. y-axis is in percentage term. Dashed lines are 95% confidence bounds. Yield data
cover maturities from 2 to 20 years. Risk aversion parameters are R1 “ 1.4384, R2 “ 1.9251
and R3 “ 1.5938. Conditional probabilities are updated using innovations from Consumption,
Dividend, and Unemployment time series.
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Figure 6: The plot shows the real yield curve in the CASU model compared to the average yield
curve and 95% confidence bounds. The plot shows the average yield curve in the data (red) with
95% confidence intervals (red-dotted) and the model implied yield curve (full sample (blue), later
sample (green diamonds)). Parameter estimates are given in Table 7. Conditional probabilities
are updated using innovations from Consumption, Dividend, and Unemployment time series. The
10-year yield data series is computed using the methodology described in Section 4.1 in the paper.
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Figure 7: The plot shows the real yield curve in the CRRA model compared to the average yield
curve and 95% confidence bounds. The plot shows the average yield curve in the data (red) with
95% confidence intervals (red-dotted) and the model implied yield curve (full sample (blue), later
sample (green diamonds)). Parameter estimates are given in Table 6. Conditional probabilities
are updated using innovations from Consumption, Dividend, and Unemployment time series. The
10-year yield data series is computed using the methodology described in Section 4.1 in the paper.

3 Robustness: alternative moment conditions

The risk aversion parameters R1, R3 are estimated using the correlations (contemporaneous and

lagged one quarter) between log simple returns and changes in the log-PDR (M1). This section

shows that these risk aversion parameters estimates are robust with regard to alternative sets of

moment conditions given by first and second order return autocorrelations (M2) and by correla-

tions between log simple returns and one and two quarter lagged changes log-PDR (M3). The risk

aversion parameters estimates outside the minimal regime, pR2, R3q, are (1.9251, 1.5938) for mo-
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ment conditions M1, (1.7895, 1.5823) for M2, and (1.9396,1.775) for M3. Parameter values change

slightly but the
Ş

-shape of risk aversion parameters across regimes is preserved. This finding

establishes that the estimates of parameters in Θ3 are robust with regard to moment selection.

4 Alternative models: specification tests

Equilibrium formulas for CASU and CRRA are provided in Sections 4.1 and 4.2. Salient differ-

ences between the various model specifications are discussed in Section 4.3. A unified framework

containing CASU, CRRA and BDRA as subcases is developed in Section 4.4. Model specification

tests are carried out in Section 4.5.

4.1 CASU (Veronesi (2004))

Let m1 ”
“

exp
`

´%µC1
˘

, ¨ ¨ ¨ , exp
`

´%µCK
˘‰

where % denotes the constant aversion to state uncer-

tainty parameter. With CASU, marginal utility is uc pt, ct, ptq “ exp p%gn ´ βtqC
´R
t m1pt. The

state price density (SPD) is, ξt “ uc pt, ct, ptq {uc p0, c0, p0q.

4.1.1 MPR

Market prices of risk are obtained from the covariation of the SPD with the innovations
`

νC , νG, νY
˘

.

This gives,

θCt “ RσC ´
m1diag

”

µCk ´pµCt
σC

ı

pt

m1pt
(1)

θGt “ ´

m1diag
”

µGk ´pµGt
σG

ı

pt

m1pt
(2)

θYt “ ´

m1diag
”

µYk ´pµYt
σY

ı

pt

m1pt
. (3)

4.1.2 Price-dividend ratio

The price-dividend ratio (PDR) is,

St
Dt
“

m1Et

”

şT
t e

´βvCκ´Rv Gvpvdv
ı

m1e´βtCκ´Rt Gtpt
.
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Letting Φ ” ´

ˆˆ

pσCq
2

2 pκ´Rq pκ´R´ 1q ´ β

˙

IK ` Λ1 ` diag
“

pκ´RqµCk ´ µ
G
k

‰

˙

and noticing

that,

d
´

e´βvCκ´Rv Gvpv

¯

“ ´Φe´βvCκ´Rv Gvpvdv ` dMv

where Mv is a martingale, it follows that Et
“

e´βvCκ´Rv Gvpv
‰

“ exp
`

´Φ pv ´ tq
˘

e´βtCκ´Rt Gtpt.

As long as the real part of the largest eigenvalue of ´Φ is negative, we have,

ż 8

t
Et

”

e´βvCκ´Rv Gvpv

ı

dv “ Φ
´1
e´βtCκ´Rt Gtpt

and the PDR becomes,

St
Dt
“
m1Φ

´1
pt

m1pt
. (4)

4.1.3 Stock price volatility

Given (4) for the PDR, the stock volatility coefficients are obtained from the covariations of the

log-PDR with the innovations in
`

µC , µG, µY
˘

as follows,

σSCt “ κσC `
m1Φ´1diag

”

µCk ´pµCt
σC

ı

pt

m1Φ´1pt
´

m1diag
”

µCk ´pµCt
σC

ı

pt

m1pt

“ κσC `

m1
ˆ

´

St
Dt

¯´1
Φ´1 ´ IK

˙

diag
”

µCk ´pµCt
σC

ı

pt

m1pt
(5)

σSGt “ σG `
m1Φ´1diag

”

µGk ´pµGt
σG

ı

pt

m1Φ´1pt
´
m1diag

”

µGk ´pµCt
σG

ı

pt

m1pt

“ σG `

m1
ˆ

´

St
Dt

¯´1
Φ´1 ´ IK

˙

diag
”

µGk ´pµGt
σG

ı

pt

m1pt
(6)

σSYt “

m1Φ´1diag
”

µYk ´pµYt
σY

ı

pt

m1Φ´1pt
´

m1diag
”

µYk ´pµYt
σY

ı

pt

m1pt

“

m1
ˆ

´

St
Dt

¯´1
Φ´1 ´ IK

˙

diag
”

µYk ´pµYt
σY

ı

pt

m1pt
. (7)
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4.1.4 Bond prices

The bond price is,

Bt`τ
t “ exp p´β pT ´ tqq

m1Et

”

C´RT pT

ı

m1C´Rt pt
.

Letting Φ
B
”

ˆ

pσCq
2

2 R p1`Rq ´ β

˙

IK ` Λ1 ´Rdiag
“

µCk
‰

and noticing that,

d
´

e´βvC´Rv pv

¯

“ Φ
B
e´βvC´Rv pvdv ` dM

B
v

for some martingale MB, it follows that Et

”

e´βTC´RT pT

ı

“ exp
´

Φ
B
pT ´ tq

¯

e´βtC´Rt pt and

Bt`τ
t “

m1 exp
´

Φ
B
τ
¯

pt

m1pt
. (8)

4.1.5 Bond yields and short rate

Given the bond prices (8), the bond yields and short rate are,

Y t`τ
t “ ´

1

T ´ t
log

¨

˝

m1 exp
´

Φ
B
pT ´ tq

¯

pt

m1pt

˛

‚

rt “ lim
tÓT

`

´BT logBt`τ
t

˘

“ ´
m1Φ

B
pt

m1pt
.

4.1.6 Bond and short rate volatilities

Bond volatility Using the expression for the bond price with α P tC,G, Y u leads to,

σB,α pt, τq “
m1 exp

´

Φ
B
pT ´ tq

¯

diag
”

µαk´pµαt
σα

ı

pt

m1 exp pΦB pT ´ tqq pt
´

m1diag
”

µαk´pµαt
σα

ı

pt

m1pt

“

m1
´

`

Bt`τ
t

˘´1
exp

´

Φ
B
pT ´ tq

¯

´ IK

¯

diag
”

µαk´pµαt
σα

ı

pt

m1pt
.
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Short rate volatility Using the expression for the short rate for α P tC,G, Y u leads to,

σr,αt “ ´

m1Φ
B

diag
”

µαk`pµαt
σα

ı

pt

m1pt
` rt

m1diag
”

µαk´pµαt
σα

ı

pt

m1pt

“ ´
m1

´

Φ
B
´ rtIK

¯

diag
”

µαk´pµαt
σα

ı

pt

m1pt
.

4.2 CRRA

The equilibrium coefficients in the CRRA model are obtained by setting % “ 0, therefore m1 “ 11K ,

in the CASU model. Table 2 summarizes the equilibrium quantities for all models considered.

4.3 Model comparison

4.3.1 CASU

The functional form of equilibrium in the CASU model is similar to that in the BDRA model

as
`

Zt,Υ, A pτq , H,H
τ,B, Hr

˘

are replaced by
´

Zt,Υ, A pτq , H,H
τ,B
, H

r
t

¯

. BDRA generates ad-

ditional terms in the stock and bond volatility components that are tied to consumption, namely

´Z 1tdiag rRksHtptσ
C and Z 1tH

τ,B
t ptσ

C . These terms emerge as Zt depends on both Ct and pt,

whereas with CASU, Zt only depends on pt. These additional volatility terms vanish asymptoti-

cally as consumption becomes large.

If arg minj µ
C
j “ arg minj Rj and p%, Ctq Ñp8,8q , then the asymptotic equilibrium coefficients

with CASU and BDRA are identical.

4.3.2 CRRA

With CRRA, learning only affects the drift of the state dynamics. MPRs are θCt “ RσC , θGt “

θYt “ 0. The risk premium is therefore the same as in the i.i.d. setting of Mehra and Prescott

(1982). Similarly, the short rate becomes rt “ β ` RpµCt ´
1
2R p1`Rq

`

σC
˘2

and only differs from

the interest rate in the i.i.d. model of Mehra and Prescott by the stochastic consumption growth

rate pµCt . Empirically, as shown in the original articles on this topic, the i.i.d. model produces a

poor fit for the equity premium and the risk free rate for moderate levels of risk aversion. Market

volatility and the equity premium are both small. Furthermore, a correlation puzzle emerges as

14



Table 2: This table shows the equilibrium MPRs θαt , PDRs St{Dt, stock volatilities σSαt , bond
prices Bt`τ

t , yields Y t`τ
t , short rates rt, bond and short rate volatilities σBα pt, τq and σrαt for the

BDRA, CASU and CRRA model specifications.

BDRA CASU CRRA

MPRs

θCt Z 1tdiag rRks ptσ
C
´ Z 1tσ

p,C
t pt RσC ´ Z

1

tσ
p,C
t pt RσC ´ 11Kσ

p,C
t pt “ RσC

θGt ´Z 1tσ
p,G
t pt ´Z

1

tσ
p,G
t pt 11Kσ

p,G
t pt “ 0

θYt ´Z 1tσ
p,C
t pt ´Z

1

tσ
p,Y
t pt 11Kσ

p,Y
t pt “ 0

PDR
St
Dt

Z 1tΥpt Z
1

tΥpt 11KΥpt
Stock volatility

σSCt ρDCσD ` Z 1tHtσ
p,C
t pt ρDCσD ` Z

1

tHtσ
p,C
t pt ρDCσC ` 11KHtσ

p,C
t pt

´Z 1tdiag rRksHtptσ
C

σSGt σD
b

1´ pρDCq2 ` Z 1tHtσ
p,G
t pt σD

b

1´ pρDCq2 ` Z
1

tHtσ
p,G
t pt σD

b

1´ pρDCq2 ` 11KHtσ
p,G
t pt

σSYt Z 1tHtσ
p,Y
t pt Z

1

tHtσ
p,Y
t pt 11KHtσ

p,Y
t pt

Bond price, yields, and short rate

Bt`τt Z 1tA pT ´ tq pt Z
1

tA pT ´ tq pt 11KA pT ´ tq pt

Y t`τt ´
logpZ1

tApT´tqptq
T´t

´
logpZ

1
tApT´tqptq
T´t

´
logp11

KApT´tqptq
T´t

rt ´Z 1t 9A p0q pt ´Z
1

t
9A p0q pt ´11K

9A p0q pt “ β `RpµCt ´
1
2
R p1`Rq

`

σC
˘2

Bond and short rate volatility

σBC pt, τq Z 1tH
τ,B
t σp,Ct pt Z

1

tH
τ,B
t σp,Ct pt 11KH

τ,B
t σp,Ct pt

´Z 1tdiag rRksH
τ,B
T ptσ

C

σBα pt, τq Z 1tH
τ,B
t σp,αt pt Z

1

tH
τ,B
t σp,αt pt 11KH

τ,B
t σp,αt pt

σrαt ´Z 1tH
r
t σ

p,α
t pt ´Z

1

tH
r
tσ
p,α
t pt ´11KH

r
tσ
p,α
t pt “ ´RCOVt

`

µC pstq , µ
α
pstq

˘

σp,αt ” diag

„

µYk ´ pµYt
σY



; Zt ”
m

m1pt
; Zt “

Mt

M 1
tpt

m1 ”
”

exp
´

´%µC1

¯

, ¨ ¨ ¨ , exp
´

´%µCK

¯ı

; M 1
t ”

”

C´R1
t , . . . , C

´Rk
t

ı

,

Υ ” Φ
´1

; Φ ” ´

˜˜

`

σC
˘2

2
pκ´Rq pκ´R´ 1q ´ β

¸

IK ` Λ1 ` diag
”

pκ´RqµCk ´ µ
G
k

ı

¸

Υij “ e1iΦ
´1
i ej ; Φi ” ´

˜˜

`

σC
˘2

2
pκ´Riq pκ´Ri ´ 1q ´ β

¸

IK ` Λ1 ` diag
”

pκ´Riqµ
C
k ´ µ

G
k

ı

¸

Ht ”

ˆ

St
Dt

˙´1

Υ´ IK ; Ht ”

ˆ

St
Dt

˙´1

Υ´ IK ;

A pT ´ tq ” exp
´

Φ
B
pT ´ tq

¯

; Φ
B
”

˜

`

σC
˘2

2
R p1`Rq ´ β

¸

IK ` Λ1 ´Rdiag
”

µCk

ı

Aij pT ´ tq “ e1i exp
´

ΦBi pT ´ tq
¯

ej ; ΦBi ”

˜

`

σC
˘2

2
Ri p1`Riq ´ β

¸

IK ` Λ1 ´ diag
”

Riµ
C
k

ı

9Aij p0q ” e1iΦ
B
i ej ;

9A p0q ” Φ
B

Hτ,B
t ”

`

Bt`τt

˘´1
A pτq ´ IK ; H

τ,B
t ”

`

Bt`τt

˘´1
A pτq ´ IK

Hr
t ”

9A p0q ´ rtIK ; H
r
t ”

9A p0q ´ rtIK
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only one risk factor is priced.

4.3.3 Steady state

Steady state values in the model with BDRA, if there is a single minimal risk aversion regime,

are obtained by taking Z8 “ e11{p18 and pt “ p8. In the model with CASU, they are found

by setting Zt equal to Z8 “ m{m1p8. In the model with CRRA, they are obtained by taking

pt “ p8. Note that in the steady state, the additional volatility coefficients of the BDRA model,

i.e., ´Z 1tdiag rRksH
τ,B
t ptσ

C and ´Z 1tdiag rRksHtptσ
C , vanish. These coefficients contribute to the

short run dynamics of the model.

4.4 Unified model

To perform specification tests, the models with CASU and BDRA are embedded in a unified frame-

work where the marginal utility of the representative agent is
řK
k“1 e

´βte´%µ
C
k C´Rkt pkt. Equilibrium

formulas are the same as with BDRA except that Zt is replaced by,

rZkt “
exp

`

´%µCk
˘

C´Rkt
řK
k“1 exp

`

´%µCk
˘

C´Rkt pkt
.

In the steady state, when Ct Ñ 8, rZt ´ Zt Ñ 0. Hence, the steady state equilibrium quantities

in the unified model are the same as in the model without state uncertainty aversion or beliefs-

dependent risk aversion. As a consequence, a specification test for BDRA versus CASU must rely on

dynamic quantities that pin down the parameters in Θ3. Furthermore, if the minimal risk aversion

regime coincides with the minimal consumption growth regime, i.e., if arg mink Rk “ arg mink µ
C
k ,

then the steady state moment conditions with CASU converge to those with BDRA as the state

uncertainty aversion parameter % Ñ 8. Therefore, if the true model has BDRA, inference based

on static moment conditions for CASU will rely on parameter estimates on the boundary of the

parameter space. Standard specification tests are then invalid. For this reason, dynamic moment

conditions must be used. The corresponding specification tests are discussed next.
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4.5 Specification tests

Both nested and non-nested specification tests are performed. The various nested model specifi-

cation tests performed next are based on the D-statistic, DT “ T
´

pJT ´ rJT

¯

where pJT (resp. rJT )

is the unrestricted (resp. restricted) GMM objective function. This statistic has been pioneered

for instrumental variable estimation by Gallant and Jorgenson (1979) and studied for method of

moment estimators by West and Whitney (1987). Similar to a likelihood ratio test, the statistic cor-

responds to an appropriately scaled difference between unrestricted and restricted model estimates.

Asymptotically, for large T, the statistic is χ2
r-distributed where r is the number of constraints.2

Non-nested specification tests are based on the N-statistic, NT “ T 1{2
´

pJmodel1T ´ pJmodel2T

¯

{pσJ

where pJmodel1T , pJmodel2T are the GMM-objective functions and pσJ is an estimator of the asymptotic

variance of the numerator of N , σ2
J ” limTÑ8 V AR

”

T 1{2
´

pJmodel1T ´ pJmodel2T

¯ı

. This test statistic

for non-nested hypothesis testing was pioneered by Rivers and Vuong (2002). Under the null hy-

pothesis that the two models, i.e., the two sets of moment restrictions, provide an equivalent fit,

the N-statistic is asymptotically standard normal if both models are misspecified and, as demon-

strated by Hall and Pelletier (2011), it has a non-standard distribution that depends on nuisance

parameters if both models are (locally) correctly specified.3 Rivers and Vuong assume that σ2
J ‰ 0.

Hall and Pelletier (2011) show that this is only the case if both models are misspecified. The

N-test rejects the null hypothesis against the alternative H1a that model 2 provides a better fit

if the N-statistic is larger than the 1 ´ α% quantile of the asymptotic limit distribution. It re-

jects the null hypothesis against the alternative H1b that model 1 dominates if the test statistic is

smaller than the α% quantile of the asymptotic limit distribution. To calculate the N-statistic, the

standard deviation in the denominator is obtained from a stationary bootstrap estimator based on

Romano and Politis (2004). As the test based on the asymptotic distribution has potentially lim-

ited power in finite samples and as the distribution itself depends on auxiliary assumptions about

model misspecification, the N-test is also implemented using empirical quantiles and p-values from

the empirical cumulative distribution function calculated using the stationary bootstrap.

2 As shown by West and Whitney (1987), the D statistic used for the test is numerically equivalent to the Wald
or LM/score statistics in the just identified case.

3They show that if the model is (locally) correctly specified, σJ “ 0, and therefore, the limit distribution of the
the N-statistic is not standard normal but given by the ratio of a quadratic form involving standard normal random
variables in the numerator and the square root of a different quadratic form involving the same normal random
variables in the denominator.
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To consider model specification tests based on a unified model structure has the advantage

that, in contrast to specification tests of non-nested models, it does not require additional generic

assumptions on the asymptotic variance σ2
J , which potentially imply non-standard asymptotic dis-

tributions of the N-statistic. Furthermore, the statistic for tests of nested models is not sensitive to

the weighting of moment conditions. In non-nested specification tests, the test statistic depends on

the weighting of moment conditions both through the numerator and the denominator. In contrast

to correctly specified models, the choice of the optimal weighting scheme cannot rely on asymp-

totic efficiency considerations if the models are misspecified. As emphasized by Hall and Pelletier

(2011) an optimal choice of instruments and therefore an optimal weighting of moment conditions

for misspecified models has yet to be developed. The fact that the asymptotic distribution of the

non-nested test relies on auxiliary assumptions about misspecification renders inference difficult.

Ideally, using overidentifying restrictions, a statistical test should decide whether σ2
J is zero or not,

i.e. whether models are misspecified. Hall and Pelletier (2011) show that such a test is not feasible

as it depends on the unknown bias of the misspecified model. The non-nested specification test

results presented in this paper have been obtained under non-adapted choices of weighting schemes,

i.e., the weighting is not model-dependent. To use a fixed weighting for both CASU and BDRA

alleviates some of the concerns expressed in Hall and Pelletier (2011).

To estimate the unified model and perform the various specification tests, the correlation be-

tween the short and long term yields is used as an additional stationary moment condition. Sim-

ilarly, the dynamic moment conditions used are the autocorrelation of simple returns for one and

two quarters, the cross-correlation between simple stock returns and short term yields lagged by

one quarter, as well as the cross-correlation between simple stock returns and short and long term

yields lagged by two quarters.

The following nested model specification tests are performed H0 : Rk “ R, βk “ β and % “ 0

versus H1 : Rk ‰ R, βk “ β and % “ 0 or % ‰ 0 (CRRA (A1)) as well as H0 : % “ 0, βk “ β

and Rn ‰ R some k versus H1 : % ‰ 0, βk “ β and Rk ‰ R some k (CASU (A2)). Note that

under the alternative hypothesis, as a minimal regime exists, the stationary moment constraints

are the same whether or nor the state uncertainty parameter % “ 0. It is therefore appropriate to

base the test of CRRA against BDRA just on stationary moment conditions. Compared to a test

based on all moment conditions, this test is conservative, i.e., if the null hypothesis is rejected, it
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will also be rejected in a test that includes dynamic moment conditions. Similarly, to test whether

the state uncertainty parameter is null must be based exclusively on dynamic moment conditions.

This follows because the stationary moment conditions do not depend on the aversion to state

uncertainty parameter in the presence of a minimal risk aversion regime. As a result, the D-

statistic calculated for the test H0 : % “ 0 versus H1 : % ‰ 0 only depends on the dynamic moment

conditions.4

Table 3 summarizes the test results. Parameter estimates for the constrained model are given

in Table 6 for CRRA and Table 7 for CASU. The null hypothesis of constant risk aversion is

rejected (A1, B1) whereas the null hypothesis of no state uncertainty aversion cannot be rejected

(A2). These two tests provide evidence that the model with beliefs-dependent risk aversion, i.e.,

the BDRA model is the best model. Two additional tests provide further evidence for this claim.

Within the BDRA model specification (% “ 0), the null hypothesis H0 : βk “ β for all k and Rk ‰ R

some k vs. H1 : βk ‰ β and Rk ‰ R some k cannot be rejected (B3). There is no evidence for

regime-dependent subjective discount rate parameters. Similarly, the null hypothesis H0 : R1 “ R3

vs. H1 : R1 ‰ R3 can be rejected (B2). Restricting the number of risk aversion regimes and forcing

a symmetric
Ş

-shaped structure of risk aversion parameters does not improve the model fit.

Non-nested specification tests and AIC and BIC model selection criteria strongly favor the

BDRA model over CASU. The null hypothesis that BDRA and CASU provide equivalent fits of

the moment conditions is strongly rejected against the hypothesis that BDRA provides a better fit.

Both model selection criteria strongly favor BDRA even though BDRA has one more parameter.

Non-nested specification tests and model selection criteria confirm the results of nested specification

tests.

To summarize, all the specification tests suggest that the best model is the BDRA model with

three risk aversion parameters, no state uncertainty aversion and constant subjective discount rates.

4 If only stationary moment conditions are used and the BDRA model is the correct model, the estimated state
uncertainty parameter must be infinite. Estimation results obtained from stationary moment conditions alone confirm
this, providing further evidence against the CASU model.
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Table 3: This table summarizes all the specification tests of the models and the model selection
criteria based on the sample period 01/1957 - 01/2014. Both nested (panels (A) and (B)) and
non-nested (panel (C)) tests are performed (see online Appendix for more details). GMM-AIC and
GMM-BIC model selection criteria are calculated as described in Andrews (1999).

I. Specification tests

Test-statistic (DT resp. NT ) critical value p-value

(A) Nested model specification tests unified model (D-test, size α “ 5%)

(A1) Test CRRA:p˚q H0 : Rk “ R, βk “ β and % “ 0 vs. H1 : Rk ‰ R, βk “ β and % “ 0 or % ‰ 0

ą75.0963 5.9915 0

(A2) Test CASU: H0 : % “ 0, βk “ β, Rk ‰ R some k vs. H1 : % ‰ 0, βk “ β, Rk ‰ R some k

0.0098 3.8415 0.9210

(A3) Test beta: H0 : βk “ β, % “ 0, and Rk ‰ R some k vs. H1 : βk ‰ β, % ‰ 0 and Rk ‰ R some k

0.0113 5.9915 0.9944

(B) Nested model specification test within BDRA (% “ 0) (D-test, size α “ 5%)

(B1) Test CRRA:p˚˚q H0 : Rk “ R vs. H1 : Rk ‰ R

ą75.0963 5.9915 0

(B2) Test # R-regimes: H0 : R1 “ R3 vs. H1 : R1 ‰ R3

10.3081 3.8415 0.0013

(B3) Test beta: H0 : βk “ β all k, and Rk ‰ R some k vs. H1 : βk ‰ β and Rk ‰ R some k

0.0013 5.9915 0.9993

(C) Non-nested model specification tests (Rivers-Vuong test, size α “ 5%)

(C1) Asymptotic, non-nested Test CASU:p˚˚˚q H0 : CASU „ BDRA vs. H1a,b : BDRAą
ăCASU

6082.14 1.6449 0

(C2) Bootstrapped, non-nested Test CASU: H0 : CASU „ BDRA vs. H1a,b : BDRAą
ăCASU

6082.14 3.4894 0

II. GMM-AIC and GMM-BIC model selection criteria

Model GMM-AIC GMM-BIC

CASU 1368.24 1364.81

BDRA 868.30 868.30

(˚) This test only depends on stationary moment conditions and is therefore conservative.

(˚˚) This test is a conservative test within the BDRA specification.

(˚ ˚ ˚) This test assumes that both CASU and BDRA are misspecified such that the asymptotic distribution is Gaussian.

Table 4 compares stationary moments of various model specifications. The CRRA model gen-
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erates low asset volatility and low risk premium, consistent with the predictions above. The CASU

model provides reasonable unconditional moments, but the correlations are off as well. In fact, as

shown in Figure 8, the most important volatility component in the CASU model is the consumption

component, σSCt . This translates into a strong consumption component in the risk premium and,

as a consequence, a correlation between consumption and stock returns that is too high. The same

occurs for the correlation between the changes in log-PDR and consumption growth. In the CASU

model, moments are affected by both cash-flow and discount factor risks, but the discount factor

risk is heavily affected by consumption variations. This is the case despite the presence of state

probabilities in the stochastic discount factor, because the consumption component dominates from

an empirical point of view.

The tension between matching the equity premium and the stock volatility, and matching

correlations between cash-flows and stock returns also affects the parameter estimation in the

CRRA model. To match correlations in the CRRA model, the risk aversion coefficient must be

low. This results in a risk premium that is too small. Alternatively, if risk aversion is high, the risk

premium is larger, but as this risk premium is generated exclusively by consumption risk, a strong

correlation between returns and cash flows emerges, i.e., there is a correlation puzzle.
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Figure 8: The plot shows the stock return variance decomposition along with the model implied
stock variance displayed by increasing level of variance, for the CASU specification. The three
components correspond to consumption source (blue), dividend source (green) and information
source (yellow).

In contrast, in the BDRA specification, the most important volatility component is σSYt , i.e., the

information risk factor (see Figure 6 in the paper and Table 5 below). This solves the correlation

puzzles: the correlation between stock returns and consumption and between stock returns and

dividends are both low. In addition, other moments such as risk premia and volatilities match the

data well. This is a direct consequence of the differences in model specifications between CASU and

BDRA. Table 5 provides the decompositions of volatilities in their orthogonalized constituents for

each model. This decomposition highlights the importance of the information factor for volatility

in the BDRA specification. In contrast to CASU and CRRA, the BDRA model can generate

a high risk premium through the discount factor risk channel (information premium) and keep

correlations between cash-flows (consumption and dividends) and stock returns low and as such

resolve the correlation and equity premium puzzles.
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Table 4: Model comparison: The following table compares various moments for the different
specifications with empirical estimates and confidence intervals.

BDRA CASU CRRA data lower bound upper bound

µC 0.019227 0.021328 0.011313 0.019528 0.017107 0.021825
µD 0.007995 0.029983 0.022961 0.017837 0.0063248 0.031133
log PDR 3.735323 3.395930 3.6158 3.5828 3.5374 3.6369
yield 10 years 0.030116 0.032893 0.024883 0.023794 0.022747 0.025143
σstock 0.210065 0.190269 0.05750 0.17323 0.15623 0.19618
σyield 0.021058 0.016859 0.0009958 0.0089543 0.0078969 0.010165
excess return 0.048652 0.049889 0.0001554 0.048838 -0.000075296 0.095248
ρSC 0.108912 0.914189 0.26635 0.27898 0.13665 0.40471
ρSD 0.249208 0.495474 0.22027 0.13565 -0.0047628 0.25919
ρY C 0.156844 -0.958982 0.38881 0.22974 0.12735 0.33731
ρY D -0.005639 -0.295547 -0.19572 -0.048961 -0.15731 0.067263
µunem 0.015751 0.022114 -0.023579 0.015664 -0.022489 0.040154
ρrC 0.270482 -0.954150 0.30545 0.22051 0.09226 0.33557
ρrD 0.004233 -0.308277 -0.3073 -0.088903 -0.23183 0.042373
σlogppdrq 0.162782 0.142986 0.01022 0.17554 0.15822 0.19816

ρlogppdrq,C 0.291318 0.923253 0.19344 0.2534 0.11371 0.37134

yield 3 months 0.030494 0.031377 0.024906 0.010114 0.0082206 0.012191
ρr,Y 0.999860 0.999840 0.9916 0.72625 0.66436 0.78034

Table 5: Volatility decomposition: σSαt {σ
S
t where α P tC,G, Y u.

lower tier mid tier top tier

BDRA cons (C) 12.7% 37.6% 21.4%
div (G) 48.4% 11.2% 2.8%
info (Y) 38.9% 51.2% 75.8%

CASU cons (C) 3.0% 4.29% 50.25%
div (G) 97.0% 95.59% 48.82%
info (Y) 0.0% 0.12% 0.93%
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Table 6: Estimated parameters (standard errors) CRRA model: GMM parameter estimates with
standard errors obtained from stationary bootstrap (Politis and Romano (1994).

Growth Regime

Normal Low High

Consumption

µC1 µC2 µC3

0.00984 0.01451 0.01949
(0.00224) (0.00195) (0.00337)

Dividend

µD1 µD2 µD3

0.03398 -0.01228 0.04672
(0.00702) (0.00737) (0.00860)

Growth Regime

Normal Low High

Unemployment

µUE1 µUE2 µUE3

-0.086546 0.14994 0.009994
(0.02741) (0.03644) (0.04075)

Preferences: risk aversion

R

1.1051
(0.90457)

Preferences: subjective discount rate

0.01250

(0.00413)

Standard Deviations and Correlations

Consumption Dividend Unemployment
Consumption 0.0092 0.1664 -0.3914

(0.0006) (0.0653) (0.0594)
Dividend 0.1664 0.0473 -0.3231

(0.0653) (0.0079) (0.0596)
Unemployment -0.3914 -0.3231 0.1244

(0.0594) (0.0596) (0.0137)

Infinitesimal Generator

Normal Low High Steady state probabilities
Normal -0.07347 0.07347 3.6528e-07 0.7197

- (0.01857) (7.728e-07)
Low 0.20943 - 0.209430 0.00436 0.2473

(0.02535) - (0.00186)
High 0.032735 1.8917e-06 -0.032735 0.0330

(0.00970) (3.0869e-06) -
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Table 7: Estimated parameters (standard errors) CASU model: GMM parameter estimates with
standard errors obtained from stationary bootstrap (Politis and Romano (1994).

Growth Regime

Normal Low High

Consumption

µC1 µC2 µC3

0.02422 0.00126 0.04514
(0.00032) (0.00562) (0.008405)

Dividend

µD1 µD2 µD3

0.03600 -0.003456 0.01720
(0.00463) (0.00954) (0.01044)

Growth Regime

Normal Low High

Unemployment

µUE1 µUE2 µUE3

0.01508 0.07910 -0.09784
(0.02559) (0.04722) (0.03945)

Preferences: risk aversion

R

1.7033
(0.01963)

Preferences: subjective discount rate

0.0049583

(0.00124)

Preferences: state uncertainty aversion

25.645

(6.0630)

Standard Deviations and Correlations

Consumption Dividend Unemployment
Consumption 0.0092 0.1664 -0.3914

(0.0006) (0.0653) (0.0594)
Dividend 0.1664 0.0473 -0.3231

(0.0653) (0.0079) (0.0596)
Unemployment -0.3914 -0.3231 0.1244

(0.0594) (0.0596) (0.0137)

Infinitesimal Generator

Normal Low High Steady state probabilities
Normal -0.036724 0.036724 1.8975e-07 0.8375

- (0.00304) (1.5733e-06)
Low 0.0054871 -0.214418 0.0046882 0.1434

(0.03084 ) - (0.00354)
High 0.03531 1.9677e-07 -0.03531 0.0190

(0.00861) (1.6672e-06) -
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Table 8: Estimated parameters (standard errors) BDRA model: GMM parameter estimates with
standard errors obtained from stationary bootstrap (Politis and Romano (1994)). The sample
period is January 1957 - December 1999.

Growth Regime

Normal Low High

Consumption

µC1 µC2 µC3

0.01391 0.01238 0.02603
(0.00776) (0.00783) (0.00867)

Dividend

µD1 µD2 µD3

0.00672 0.00144 0.04651
(0.00865) (0.01135) (0.00916)

Growth Regime

Normal Low High

Unemployment

µUE1 µUE2 µUE3

-0.01634 0.10143 0.00992
(0.03768) (0.03689) (0.03489)

Preferences: risk aversion

R1 R2 R3

2.3981 2.7097 2.4221
(0.74061) (0.06445) (0.09766)

Preferences: subjective discount rate

β

0.00019
( 0.0035609)

Standard Deviations and Correlations

Consumption Dividend Unemployment
Consumption 0.0092 0.2520 -0.3421

(0.0618) (0.2110) (0.2239)
Dividend 0.2520 0.0292 -0.3770

(0.2110) (0.0221) (0.1801)
Unemployment -0.3421 -0.3770 0.1274

(0.2239) (0.1801) (0.0773)

Infinitesimal Generator

Normal Low High Steady state probabilities
Normal -0.0537051997 0.0537050000 0.0000001997 0.7559

- (0.013962) (1.7331e-06)
Low 0.2156900000 -0.2202637000 0.0045737000 0.1843

(0.024922) - (0.0032995)
High 0.0141050000 0.0000037906 -0.0141087906 0.0598

(0.0073274) (1.8853e-06) -

26



References

Gallant, A.R., Jorgenson, D.W., 1979. Statistical inference for a system of simultaneous nonlinear

implicit equations in the context of instrumental variable estimtion, Journal of Econometrics 11,

275–302.

Hall, A.R., Pelletier D., 2011. Nonnested testing in models estimated via generalized method of

moments, Econometric Theory 27, 443–456.

Newey, W.K., West, K.D., 1987. Hypothesis testing with efficient methods of moment estimation,

International Economic Review 28, 777–787.

Rivers, D., Vuong, Q., 2002. Model selection tests for nonlinear dynamic models, Econometrics

Journal 5, 1–39.

27


