
JFE Online Appendix: The QUAD Method

Part of the QUAD technique is the use of quadrature for numerical solution of option pricing

problems. Andricopoulos et al. (2003, 2007) use quadrature as the only computational ’engine’;

in this concluding paper a second type of engine is added, using closed-form approximations for

transition density functions. However, in all three papers, quadrature is used in the same way.

In this appendix we outline the technique.

The intuition behind QUAD is that although Equation (1) is not valid across all points in

time, the valuation problem can be sliced into consecutive time intervals, during which it is

locally applicable.

V (x, t) = A(x)

∫ ∞
−∞

B(x, y)V (y, t+ ∆t)dy, (1)

Imposition of the appropriate option features at their corresponding observation times pro-

vides a link between these consecutive intervals, and solution of complex problems becomes

possible and is, by the nature of the technique, extremely fast. Any of the common quadrature

methods is applicable, including higher-order schemes and Gaussian quadrature. The algorithm

is readily modularized to permit easy interchange of quadrature engines. Calculation is no more

complicated than calculating the option value using a tree or finite difference but in QUAD the

contribution at the previous timestep comes from many nodes representing different levels of the

underlying asset not just two or three and, unlike trees and finite difference grids, calculations

are not required in regions between observation times.

Quadrature methods solve an integral equation of the form shown in Equation (1). These

are widely described in Mathematics textbooks. We demonstrate for Simpson’s rule, which is

frequently the superior choice as the numerical engine due to its robustness, simplicity and fast

convergence. Simpson’s Rule for some integration
∫ b
a f(x)dx is:

∫ b

a
f(x)dx =

∫ a+2h

a
f(x)dx ≈ 1

3
h(f0 + 4f1 + f2)

where

h =
b− a

2

1

This can be derived (and the error bounds and rate of convergence determined) by using

quadratic interpolation. Consider a Lagrange interpolating polynomial:

P (x) =
(x− a− h)(x− a)

(a+ 2h− a− h)(a+ 2h− a)
f0

+
(x− a− 2h)(x− a)

(a+ h− a− 2h)(a+ h− a)
f1

+
(x− a− 2h)(x− a− h)

(a− a− 2h)(a− a− h)
f2

Arranging and simplifying the polynomial, we find:

P (x) =
x2

h2

(
1

2
f0 − f1 +

1

2
f2

)
+

x

h2

(
−1

2
(2a+ 3h)f0 + (2a+ 3h)f1 −

1

2
(2a+ h)f2

)
+

1

2h2

(
1

2
(a+ h)(a+ 2h)f0 − a(a+ 2h)f1 +

1

2
a(a+ h)f2

)

Integrating and simplifying:

∫ b

a
f(x)dx =

∫ a+2h

a
P (x)dx

=
1

3
h(f0 + 4f1 + f2)−

1

90
h5f (4)(ε)

for some ε ∈ [a, b].

We can always split the region of integration into n smaller regions, approximate the inte-

grand in each of the n regions and sum them back together. This gives the composite Simpson’s

rule:

∫ a+2h

a
f(x)dx =

1

3
h(f0 + 4(f1 + f3 + ..+ f2n−1) + 2(f2 + f4 + ..+ f2n−2) + f2n)

− n

90
h5f (4)(ε)

(2)

where n = b−a
2h

2

We observe that the error is bounded by:

h4

180
(b− a) max

ε∈[a,b]

∣∣∣f (4)(ε)∣∣∣
and has convergence rate of order h4. Other numerical schemes and their error bounds can be

derived in similar fashion.

A general formula for QUAD under one dimensional integration is expressed as follows:

Given step size δx = b−a
N ,

∫ b

a
f(x)dx ≈ δx q · f(x)

where f(x) is a {N + 1}-dimensional vector with its ith term defined as:

f i(x) =f(a+ (i− 1) ∗ δx) ∀i ∈ [1, N + 1]

and q is {N + 1}-dimensional weighting vector. For example, qS under Simpson’s rule for even

N is:

qS =
1

3

1

4

2

...

2

4

1

(3)

3

For comparison, under the Trapezoidal rule (see Mathematics texts),

qT =
1

2

1

2

...

2

1

(4)

In order to integrate via quadrature, the integrand should have continuous derivatives. The

first derivative of the payoff on a call option is clearly discontinuous at the strike price. If

this discontinuity is avoided, convergence will be smooth. We split the integration range into

two smaller parts with boundary defined on the discontinuity; the derivatives of the integrand

are continuous in both parts of the integration range: −∞ < y < 0 and 0 < y < +∞. For

a European call option, clearly the valuation problem is reduced to evaluating the integral

corresponding to the range 0 < y < +∞.

For other options this discontinuity may occur in other ways; for a barrier option the dis-

continuity is in the payoff function itself at the barrier, creating a degree of nonlinearity error,

and for an American put it occurs in the second derivative at the free boundary. If the discon-

tinuities are not taken into account, then convergence will not be smooth (though reasonable

solutions may still be had if discontinuities are not precisely located, in quick and dirty program-

ming!). The location of discontinuities in the payoff function will be known a priori for some

classes of options (such as a vanilla call or put option or a discrete barrier option). For other

classes of options (such as a Bermudan option) the position of the discontinuity is calculated at

every observation time via Newton-Raphson iteration, which converges rapidly. Options that

are awkward to deal with using other lattice/grid techniques are handled via QUAD with rela-

tive ease (examples: lookback options in three dimensions and moving barrier options) because

quadrature points can be easily and precisely placed.

Practically, the infinite integration range needs to be truncated but truncation error quickly

tends to zero with increasing multiples of standard deviation of the underlying asset. If the

integration range of y is set corresponding to the movement of asset price within ten standard

deviations away from initial price, the truncation error is small enough to be neglected under

4

even the most extreme σ setups. The integration range is then reduced to 0 < y < ξσ
√
τ + x0

where ξ denotes the number of standard deviations considered.

With the integrand and integration range properly set up, as above, the valuation problem

can be solved by Equation (2) as

V (x, t) ≈ A(x)

∫ Nδy

0
f(x, y)dy

≈ A(x)δy

3

(
f(x, 0) + 4

N−1∑
i=0

f

(
x, (i+

1

2
)δy

)

+ 2

N−1∑
i=1

f (x, iδy) + f(x,Nδy)

)

where number of steps, N , and step size, δy, are defined as:

N =
ξσ
√
τ + x0
δy

(5)

Consequently, the error term is bounded by:

δy4

180
(ξσ
√
τ + x0) max

ε∈[0,Nδy]

∣∣∣f (4)(ε)∣∣∣
which quickly converges to zero as δy becomes small, with a rate of convergence of four. Richard-

son Extrapolation can be used to improve the rate of convergence further:

Vext =
δyd1V2 − δyd2V1
δyd1 − δyd2

where d = 4 is the rate of convergence of Simpson’s rule, and V1 and V2 are prices evaluated

with corresponding step sizes δy1 and δy2.

5

The Greeks

Calculation of Greeks is straightforward, via finite differencing on option values for several

neighboring values of x and v; for example:

∆ ≡ Vx(x, v) ≈ V (x+ δx, v)− V (x− δx, v)

2 δx

ν ≡ Vv(x, v) ≈ V (x, v + δv)− V (x, v − δv)

2 δv

Γ ≡ Vxx(x, v) ≈ V (x+ δx, v)− 2V (x, v) + V (x− δx, v)

δx2

Vomma ≡ Vvv(x, v) ≈ V (x, v + δv)− 2V (x, v) + V (x, v − δv)

δv2

Vanna ≡ Vxv(x, v)

≈ V (x+ δx, v + δv)− V (x+ δx, v − δv)− V (x− δx, v + δv) + V (x− δx, v − δv)

4 δx δv

for small δx and δv (such that δx
x � 1 and δv

v � 1).

Other first and second order Greeks can also be calculated in the same fashion.

QUAD with Path-Dependent Options

A discrete path-dependent option is an option whose payoff function is dependent not only

on the price of the underlying at the exercise date but also on the price of the underlying at

discrete points in time before exercise. Consider a path-dependent option that matures at time

T . Suppose that the option and its underlying are monitored M+1 times with M intervals ∆tm

from present time t to maturity, such that:

T = t+

M∑
i=1

∆ti

The valuation of this option is divided into evaluation of M separate options with maturity

t+
∑k+1

i=1 ∆ti at time t+
∑k

i=1 ∆ti ∀ integer k ∈ [0,M) . Denote these observation points before

maturity as:

tk = t+

k∑
i=1

∆ti

6

Working backwards in time with known final conditions at maturity, the value of option

VM (x, tM−1) with maturity T at tM−1 can be priced for the entire range of underlying prices,

x. Together with conditions imposed at this observation point, these option prices can then

be used as final conditions for the valuation of option VM − 1(x, tM−2) with maturity tM−1 at

tM−2. This evaluation process is continued until the value of option price V1(x, t) is found.

The pricing of the option is effectively an M step multinomial tree with number of branches

for each node equal to 2N + 1 subject to discontinuous boundaries, and N is the number of

QUAD steps defined in Equation 5. Note that in this multinomial tree the number of nodes

does not change after initialization at the first time step and is not subject to discontinuity

of the payoff function. Therefore it does not give rise to the saw-tooth effect observed with

tree-based models.

In practice, path-dependent options are discretely monitored at discrete points in time and

the payoff function of the option depends on a discrete set of underlying prices rather than the

continuous pricing function. If the price of a discretely monitored option V (M) converges at

rate d to the price of its theoretical continuously monitored counterpart V ∗ as the number of

observation point M tends to infinity, then:

VM = V ∗ + a
1

Md

for some constant a. Richardson extrapolation can be used for calculating option prices with

higher observation frequency:

VM3 =
Md

1 (Md
2 −Md

3)VM1 +Md
2 (Md

3 −Md
1)VM2

Md
3 (Md

2 −Md
1)

M3 >M1,M2

(6)

Choice of K

In Section (3.4) of the main text, we introduce a proxy for accuracy, K, to allow comparisons

between the various computations. Here, we justify our approach in more detail by deriving a

strictly correct mathematical approach which then leads to a reasonable proxy.

Each potential QUAD engine has an error upper bound O(δyd) for an arbitrary order d.

The computational complexity of the QUAD method for a discretely path dependent option

7

with M observations to maturity, is of order O(M×N b) where N is the number of QUAD steps

such that:

N =
ymax − ymin

δy

b is defined by the dimension of the underlying of the option D. The number of plain QUAD

methods used when D = 1 is:

(N + 1) +M × (2
N+1∑
N
2
+1

i− (N + 1))

This expression is a polynomial of N up to second order. It is then useful to define a vector as:

g =

(
N
2 + 1 N

2 + 2 . . . N N + 1 N . . . N
2 + 2 N

2 + 1

)

We can next formulate the computational complexity of D-dimensional QUAD method as:

(N + 1)D +M ×
(
Gi1,i2,··· ,iD−1Gi1,i2,··· ,iD−1

)
where

Gi1,i2,··· ,iD = g ⊗Gi1,i2,··· ,iD−1

and this expression is polynomial of N up to the order of 2 × D. For example, the QUAD

method using a local volatility model on a single asset would have a computation complexity

of O(M ×N2), and for stochastic volatility models would have O(MN4).

If we construct the grid such that the overall error term is independent of M , we are to force

the following expression to be independent of M :

f(N) =
(
(N + 1)D +M ×

(
Gi1,i2,··· ,iD−1Gi1,i2,··· ,iD−1

))
×O(δyd)

≡
(
(N + 1)D +M ×

(
Gi1,i2,··· ,iD−1Gi1,i2,··· ,iD−1

))
×O(N−d)

8

we therefore choose our time step K as a function, of M , S(M) such that

M = S−1(K) =
constant(

Gi1,i2,··· ,iD−1Gi1,i2,··· ,iD−1

)
O(K−d))

such that 1
M is a polynomial of K with maximum order of 2D − d and minimum order of −d.

Now, this method of choosing our time step, although providing a precisely built, uniformly

dense grid across the whole range of observation M , adds unnecessary computation cost to the

algorithm and so we use a proxy which mimics the dynamics of S(M). Note that, for Simpson’s

rule with a local volatility model:

S−1(K) =
constant

3
4O(δy2) + 3

2O(δy3) +O(δy4)

Conveniently, it then turns out in practice that there is no need to calculate explicitly the

function S(M). Both 1
log(M) and 1√

M
can be a good proxy for S(M).

QUAD in Multiple Dimensions

Consider a three dimensional integral in R3 cuboid space y1, y2, y3 over domain ymaxi ≤ yi ≤

ymini :

I =

∫ ∫ ∫
f(y1, y2, y3)dy1dy2dy3

=

∫ ymin
3

ymax
3

(∫ ymin
2

ymax
2

(∫ ymin
1

ymax
1

f(y1, y2, y3)dy1

)
dy2

)
dy3

(7)

Define following the functions:

G(y2, y3) =

∫ ymin
1

ymax
1

f(y1, y2, y3)dy1 (8)

and

H(y3) =

∫ ymin
2

ymax
2

G(y2, y3)dy2 (9)

9

such that,

I =

∫ ymin
3

ymax
3

H(y3)dy3 (10)

The integration problem (7) is equivalent to the three integrations 8 to 10. QUAD can be

used recursively for each integration to find G, H and I. The D-dimensional QUAD over D-

orthotope domain is formulated as follows:

Given quad steps in each dimension as δyk =
ymax
k −ymin

k
N , the integral can be approximated by:

I ≈

(
D∏
k=1

δyk

)
Qi1...iDF i1..iD(y1, · · · , yD)

where F is a (N+1)D tensor of function value at quad points defined as:

F i1..iD(y1, · · · , yD) =f(y1 + (i1 − 1)δy1, · · · , yD + (iD − 1)δyD)

∀i1, i2, · · · , iD ∈ [1, N + 1]

and Q is a (N+1)-dimension weighting tensor of order D such that, if the weights is defined in

one dimension as (N+1)-dimension vector q with its ith entry denoted by qi, the {i1..iD}-th

entry of Q is defined as:

Qi1..iD =

D∏
k=1

qik

∀i1, i2, · · · , iD ∈ [1, N + 1]

10

For the purpose of illustration, the weighting matrix QS of Simpson’s rule in 2-d can be calcu-

lated from its 1-d weighting vector qS defined in Equation (3) as:

QS = qS ⊗ qS =
1

9

1 4 2 · · · 2 4 1

4 16 8 · · · 8 16 4

2 8 4 · · · 4 8 2

...
...

...
. . .

...
...

...

2 8 4 · · · 4 8 2

4 16 8 · · · 8 16 4

1 4 2 · · · 2 4 1

and weighting matrix QT of Trapezoidal rule in two-dimension can be calculated from its one-

dimension weighting vector qT defined in Equation (4) as:

QT = qT ⊗ qT =
1

4

1 2 · · · 2 1

2 4 · · · 4 2

...
...

. . .
...

...

2 4 · · · 4 2

1 2 · · · 2 1

In fact, the numbers of QUAD steps Nk for each dimension k do not need to be consistent as

long as they satisfy the conditions defined by the QUAD scheme, thus: Nk is even for Simpson’s

quadrature. In this work, Nk is set universally across dimensions in order to simplify the tracking

of convergence rate. Again, in order to remove any non-linearity error, the integration domain

is segmented along discontinuities of function f and the remaining error term of D-dimensional

QUAD takes the form:

D∑
k=1

o(δydk)

where d is the rate of convergence of the chosen QUAD scheme in one dimension. It is readily

observed that, for an arbitrary dimension D, the rate of convergence of any QUAD scheme

inherits its one-dimensional value. Therefore (and importantly), Richardson’s extrapolation

11

can also be adapted in higher dimensions to improve the convergence of QUAD method.

2014 Ding Chen, Hannu J. Härkönen & David P. Newton

12

