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IA.1. Proof of Lemma A.1

Denote by p(⇧|F i
t ) the conditional density of ⇧ with respect to F i

t . Fixing a time t = ⌧k and
applying Bayes’ rule, the conditional density p(⇧|F i

t ) satisfies the recursive relation

p(⇧|F i
t ) =

p(⇧|F i
t�)f(S|⇧)R

R p(x|F i
t�)f(S|x)dx

(IA.1)

where f(S|⇧) denotes the density of a vector of signals S conditional on ⇧ and where p(⇧|F i
t�)

satisfies

p(⇧|F i
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(IA.2)

since, from Theorem A.1, p(⇧|F i
t ) is conditionally Gaussian for any t 2 (⌧k�1, ⌧k) (Liptser and

Shiryaev (2001), Theorem 12.6). First, let S =
h
Si
ni
t�+1

Si
ni
t�+2

... Si
ni
t�+�ni

t

i>
be the vector

of signals in the sequence (Si
j+ni

t�
: 1  j  �ni

t). Conditional on ⇧, these signals are independent

and thus
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After substituting (IA.3) in (IA.1) and integrating, the conditional density p(⇧|F i
t ) is explicitly

given by

p(⇧|F i
t ) =
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(IA.4)
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Second, let S = Y i
t be the aggregate signal, in which case

f(Y i
t |⇧) =
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Substituting (IA.5) in (IA.1) and integrating, the conditional density in (IA.4) becomes

p(⇧|F i
t ) =
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Clearly, the expressions in (IA.4) and (IA.6) are equivalent if and only if Y i
t = (�ni

t)
�1P�ni

t
j=1 S

i
j+ni

t�

and, by induction, this result must be true for all t = ⌧k and k 2 {0, 1, ..., N i
T }.

IA.2. Proof of Lemma A.3

Observe that the Brownian motion bBc is adapted to F c and, therefore, to F i � F c. Second,
combine (57) and (74) and obtain

d bBi
t = d bBc

t �
1

�2,t�⇥
(�0

1,t�
i
t + (�0

2,t � a⇥�2,t)(b⇥i
t � b⇥c

t))dt. (IA.7)

Since ⇠t 2 F c
t ⇢ F i

t , it follows that b⇥i
t� b⇥c

t = ��1,t

�2,t
�i

t, which, substituted in (IA.7) and using (61)

gives (86). Third, for E
bPc
[Z] = 1 to hold, i.e., for bPi to be absolutely continuous with respect to

bPc under F i, the Radon-Nikodym derivative in (85) must be a martingale. A su�cient condition
under which Z is a martingale is the Novikov condition (Karatzas and Shreve (1988), Proposition
5.12):

EbPc


exp

✓
1

2

Z T

0
(kt�

i
t)
2dt

◆�
< 1, 0  T  1 (IA.8)

where the process �i under bPc satisfies

d�i
t = �ot(n

i)k2t�
i
tdt+ kt(ot(n

i)� oct)d bBc
t . (IA.9)

Observing that the process in (IA.9) is Gaussian, Example 3 (a) (Liptser and Shiryaev (2000), p.
233) shows that the Novikov condition in (IA.8) boils down to

suptT |kt|E
bPc ⇥���i

t

��⇤ < 1, suptT k2tV
bPc ⇥
�i

t

⇤
< 1. (IA.10)

In this setup, the conditions in (IA.10) simplify to

suptT |kt|
R t
0 k

2
sds < 1, suptT k2t

R t
0 k

2
sds < 1. (IA.11)

Using (61) and anticipating on the equilibrium result of Lemma C.2, the two conditions in (IA.11)
are equivalent to requiring that the function �(·) be continuous, which it is by assumption. Theorem
A.3 then follows from Girsanov theorem (Karatzas and Shreve (1988), Theorem 5.1).
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IA.3. Proof of Lemma B.2

Consider first the right-hand side of (138). From (134), I obtain

⌃t(n,m)
A>
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(IA.12)

Furthermore, from (135), I can write
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which, substituted in (IA.12) yields

⌃̇t(n,m) = ⌦t
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where the second equality follows from simplifications based on (61). Second, consider the left-hand
side of (138) and directly di↵erentiate ⌃ in (107) using (69) to obtain

⌃̇t(n,m) = ⌦̇t
m

�2
S

ot(n)ot(n+m)� ⌦t
m

�2
S

k2t ot(n)ot(n+m)(ot(n) + ot(n+m)). (IA.16)

Finally, regrouping terms in (IA.14) and using Eq. 68 shows that (IA.14) and (IA.16) coincide and
the di↵erential equation in (138) must therefore hold.

IA.4. Population dynamics in the general setting of
Section 2.1

In this appendix, I derive the dynamics of information sharing for the general setting of Section
2.1 (Appendix IA.4). In the general setting of Section 2.1, the dynamics of a manager i’s number
ni of ideas satisfy

dni
t = �ni

tdN
i
t , ni

0 ⇠ ⇡0, �ni
t ⇠ ⇡t(·;ni

t�) (IA.17)

where (N i)t�0 denotes a Poisson process with intensity ⌘(ni
t�). These dynamics imply a certain

cross-sectional distribution, µ, of number of ideas, i.e., the distribution µ must satisfy a certain
Kolmogorov Forward Equation (KFE), which I derive using the result formulated in Lemma IA.4.1.

Lemma IA.4.1. Define the expectation

gt ⌘ E[f(nt)] =
X

k2N
f(k)µt(k) (IA.18)
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for an arbitrary function f(·). Then, the function g must satisfy the di↵erential equation

d

dt
gt =

X

n2N
⌘t(n)µt(n)

X

m2N
f(n+m)⇡t(m;n)�

X

n2N
⌘t(n)µt(n)f(n) (IA.19)

with initial condition g0 =
P

k2N f(k)⇡0(k).

Proof. Observe that the generator of the process in (IA.17) satisfies

Af(n) = ⌘t(n)
X

m2N
⇡t(m;n)(f(n+m)� f(n)) (IA.20)

and rewrite the expectation in (IA.18) as

gt = E[f(n0)] +

Z t

0
E[Af(ns)]ds = E[f(n0)] +

Z t

0

X

n2N
Af(n)µs(n)ds. (IA.21)

Di↵erentiating Eq. (IA.21) with respect to time and rearranging yields (IA.19).

To obtain the KFE in (3), I then change the summation order in (IA.19). Specifically, introduce
the change of variable k ⌘ n+m and rewrite the first term in (IA.19) as

X

n2N

X

m2N
f(n+m)⌘t(n)⇡t(m;n)µt(n) =

X

k2N

k�1X

m=1

f(k)⌘t(k �m)⇡t(m; k �m)µt(k �m). (IA.22)

Plugging (IA.22) into (IA.19) and rearranging, I obtain

X

n2N
f(n)

d

dt
µt(n) =

X

n2N
f(n)

 
⌘

n�1X

m=1

⌘t(n�m)⇡t(m;n�m)µt(n�m)� ⌘t(n)µt(n)

!
. (IA.23)

Observing that the function f(·) is arbitrary, the KFE in (3) follows.

IA.5. Average trajectories of number of ideas

In this appendix, I derive a manager’s average trajectory of number of ideas, which I use for
the main analysis in Section 5 (Appendix IA.5). In particular, I obtain the average trajectory of a
manager i’s number of ideas conditional on manager i holding ni

T = k ideas at the horizon date,
i.e., E

⇥
ni
t

��ni
T = k

⇤
. Applying Bayes’ rule, first observe that

P
⇥
ni
t = m

��ni
T = k

⇤
=

P[ni
t = m]P[ni

T = k
��ni

t = m]

P[ni
T = k]

=
µt(m)⇢T�t(k;m)

µT (k)
(IA.24)

where ⇢ is the probability that manager i gets k � m ideas by the horizon date conditional on
holding m ideas at time t. To compute this probability, apply the result of Lemma IA.4.1 to
gs ⌘

P
n2N f(n)⇢T�s(n;m) for s > t with initial condition, gt = m, which yields:

⇢T�t(k;m) = 1{k�m}e
t�(k�m+1)T

⇣�
e⌘T � 1

�k�m�1
⇣
e⌘(T�t) � 1

⌘⌘1{k�m�1}
(IA.25)
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under idea sharing, whereas under idea origination:

d

dt
⇢s(k;m) = �⌘⇢s(k;m) + ⌘⇢s(k;m� 1), (IA.26)

with initial condition, ⇢t(n;m) = �n=m, where �n=m is a Dirac mass at n = m. It then follows that
the average trajectory of manager i’s number of ideas is given by

E
⇥
ni
t

��ni
T = k

⇤
=

1

µT (k)

kX

m=1

mµt(m)⇢T�t(k;m), (IA.27)

which has a closed-form solution under idea sharing:

E
⇥
ni
t

��ni
T = k

⇤
=

1� e⌘T + ek⌘(T�t)
�
e⌘t � 1

�k �
e⌘T � 1

�1�k

1� e⌘(T�t)
. (IA.28)

IA.6. Proof of Proposition 9 (distribution shift relative
to luck)

In this appendix I show that the cross-sectional distribution of t�statistics is shifted to the left
when the distribution of number of ideas is symmetric or satisfies Corollary 1.

I start by computing the probability that a manager i’s t�statistic is negative:

P[ti↵,t  0] =

Z 0

�1
lt(x)

 
1 +

X

n2N⇤

µt(n)erf

✓
xp
2
Rt(n)

◆!
dx (IA.29)

=
1

2
� 1

⇡

X

n2N⇤

µt(n)tan
�1

 
n� �tp

n

p
E[SR2

t ]

�S |kt|

!
. (IA.30)

Proving that Eq. (43) holds is thus equivalent to proving:

X

n2N⇤

µt(n)tan
�1

✓
n� �tp

n
't

◆
⌘ ⌥t < 0, (IA.31)

where 't > 0 is positive at all finite times.
Assuming the functional form for µt in Corollary 1, I start by bounding tan�1(·) in Eq. (IA.31)

by a piecewise linear function:

tan�1
⇣
't

n��tp
n

⌘
 1nb�tc

�t�n
�t�1 tan

�1('t(1� �t)) + 1n>b�tcmin
n

n��tp
�t

, ⇡2

o
⌘ g(n), n 2 N⇤ ,

(IA.32)

where the first term exploits that the support is bounded at 1 and the second term exploits both that
the function is concave for all n � �t and thus bounded above by its first-order Taylor expansion
and that tan�1(·) is bounded above at ⇡/2. Although this bound can be tightened, it is su�cient
to prove Eq. (IA.31) and simple enough to compute explicit expressions: rewriting µt in Eq. (27)
as

µt(n) = ��n
t (�t � 1)n�1, (IA.33)
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and taking expectations over the function g(·) in Eq. (IA.32) yields the explicit bound:

⌥t <

✓
�t � 1

�t

◆b�tc 't b�tcp
�t

0

B@
⇣
1 + ⇡

p
�t

2't
�
l
�t +

⇡
p
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2't

m⌘⇣
�t�1
�t

⌘
⇠
�t+

⇡
p

�t
2't

⇡
�(b�tc+1)

+
p
�t

⇣
tan�1('t(1��t))

't(�t�1) + 1p
�t

⌘

1

CA . (IA.34)

By assumption, ⌘ > 0, which implies that �t > 1 and thus the term inside the bracket is nonpositive,
from which the inequality in Eq. (IA.31) follows.

Note that the result also obtains when µt is strictly symmetric at all times. Since the function
tan�1(·) in Eq. (IA.31) is odd and negative for all n  b�tc, I define a new function f : [b�tc +
1, 2b�tc] ! R+ by reflecting tan�1(·) in Eq. (IA.31) first horizontally about zero and then vertically
about �t to obtain:

f(n) = tan�1

✓
't

n�(2b�tc+1��t)p
2b�tc+1�n

◆
, n = b�tc+ 1, . . . , 2b�tc. (IA.35)

The concavity of the skill-to-luck ratio then implies that

f(n) > tan�1
⇣
't

n��tp
n

⌘
, n = b�tc+ 1, . . . , 2b�tc. (IA.36)

Using this result I obtain a strict bound for Eq. (IA.31):

⌥t <
X

n2[1,b�tc][(2b�tc,...,1)

µt(n)tan
�1

✓
n� �tp

n
't

◆
+

X

n2(b�tc,2b�tc]

µt(n)f(n), (IA.37)

at all finite times. Symmetry further implies that

X

n2[1,b�tc]

µt(n)tan
�1

✓
n� �tp

n
't

◆
+

X

n2(b�tc,2b�tc]

µt(n)f(n) = 0 (IA.38)

and that µt has zero mass beyond twice its mean:

µt(n) = 0, n � 2b�tc, (IA.39)

since it is symmetric and its support is bounded from the left at 1. Hence, in the symmetric case
Eq. (IA.37) directly leads to Eq. (IA.31).

IA.7. Details on computations in Section 6 (fund flows
and fees)

In this appendix I discuss computational details related to the equilibrium solution in the
presence of fund flows and fees. For the sake of brevity, I simply pinpoint results that di↵er from
the baseline model.

Note first that flows and fees do not a↵ect the results of Proposition 1. However, they modify
portfolio strategies. To see how, I go over the main steps of Appendix B in the presence of fees and
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flows. Maximizing manager i’s expected utility over compensation in Eq. (48) implies:

max
✓i

E
⇥
� exp

�
��f((⌧ + 1)W i

T � ⌧BT )
���F i

t

⇤
. (IA.40)

The solution to this maximization problem is

✓iT� ⌘ ✓i( , n, T�) =
1

f(⌧ + 1)�
(oT�(n))

�1 �>
T� +

⌧

⌧ + 1

✓
�1,T�
�2,T�

�i
T� + b⇥i

T�

◆
. (IA.41)

which substituted in the value function yields the boundary condition

J(W,B, , n, T�) = � exp

✓
��f((⌧ + 1)W � ⌧B)� 1

2
(oT�(n))

�1 >⇤T� 

◆
. (IA.42)

The problem has an additional state variable, B, which applying Ito’s lemma to Eq. (50) satisfies:

dBt = b⇥c
tdPt =

⇣
�1,t

�2,t
1
⌘
 i

tdPt ⌘ !>
t  

i
tdPt. (IA.43)

The associated HJB equation now satisfies

0 = max
✓i

⇢
JWAQ 

i✓i +
1

2
JWWB2

Q(✓
i)2 +BQB (n

i)>JW ✓
i + JWBB

2
Q!

> ✓i
�
+ Jt + J>

 A  
i

(IA.44)

+
1

2
tr(J  B (n

i)B (n
i)>) + JB( 

i)>!>AQ 
i +

1

2
JBBB

2
Q( 

i)>!>! i +BQ!
> iB (n

i)>JB 

(IA.45)

+ ⌘(ni)ELt(bY i,�ni)
h
J(W i, Bi, i + �(ni,�ni)bY i, ni +�ni, t)� J(W i, Bi, i, ni, t)

i
. (IA.46)

The first-order condition then yields the following portfolio policy:

✓it ⌘ ✓t( 
i, ni) = �

JWAQ i +BQB (ni)>JW + JWBB2
Q!

> 

JWWB2
Q

. (IA.47)

Substituting back in the HJB equation, tedious derivations show the ansatz of Theorem B.1 be-
comes:

J(W,B, , n, t) = � exp

✓
��f((⌧ + 1)W � ⌧B)� ut(n)�

1

2

⇣
 >Rt(n) +Rt(n)

> + >Mt(n) 
⌘◆

,

(IA.48)

where R and M satisfy the system of equations in Theorem B.1. The equation for u di↵ers, but
is irrelevant for portfolio strategies and is thus omitted. As a result, the solution for R and M
is identical to Lemma B.3. Substituting these expressions in the optimal policy above yields Eq.
(51).

To obtain price coe�cients I now go over the main steps in Appendix C. Aggregating first
portfolios at the horizon date:

Z 1

0
✓iT�di =

X

n2N
µT (n)

1

�f
(oT�(n))

�1 �>
T��T�(n) T + ⌧!T� T = (⌧ + 1)1? T , (IA.49)
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which yields the boundary conditions

�1,T� =
ocT��T

(⌧+1)(�T ocT�+�2
S)

and �2,T� = ��f
ocT��2

S

(�T ocT�+�2
S)

. (IA.50)

Similarly, aggregating portfolios at date t, Eq. (184) becomes:

X

n2N
µt(n)

⇣
AQ,t �BQ,t (ot(n))

�1B ,t(n)
>⇤t

⌘
�t(n)!t = ��1,t

�2,t
�f(⌧ + 1)B2

Q,t, (IA.51)

since !>
t !t = 0, which yields, �1,t

�2,t
= � �t

�f(⌧+1)�2
S
, and thus

oct =

 
1

�2
⇧

+

✓
�0

�f(⌧ + 1)�⇥�2
S

◆2

+

✓
1

�⇥�2
S�f(⌧ + 1)

◆2 Z t

0

✓
d

ds
�s

◆2

ds

!�1

. (IA.52)

Finally, spelling out the second equation of the system Eq. (191) becomes

d

dt
�2,t = �kt�2,tBQ,t +B2

Q,t

✓
�2,t

�toct + �2
S

oct�
2
S

+ �f

◆
, (IA.53)

the solution of which is Eq. (52).
Furthermore, going through the steps of Appendix D and simplifying yields

b✓it =
ni
t � �t

f�(⌧ + 1)(�2
S + oct�t)

✓
�2
S(⌧ + 1) + ⌧oct�t

�2
S(⌧ + 1)

�t + f�oct⇥t

◆
+

p
ni
t

f�(⌧ + 1)�S
✏it (IA.54)

+ ⌧
�2
Skt(f��

2
S�⇥(⌧ + 1) + ktoct�t)

(�2
S(⌧ + 1)(f��⇥ � kt)� ⌧ktoct�t)2

✓
�t

f��2
S(⌧ + 1)

�t �⇥t

◆
(IA.55)

⌘ a�,t(n
i
t)�t + a⇥,t(n

i
t)⇥t + a✏,t(n

i
t)✏

i
t, (IA.56)

where the second line corresponds to the function H(·) in Eq. (53). To compute informational
alphas, I substitute the equilibrium solution in Eq. (80) to obtain

AQ,t = ⌧

 
ktoct (f��

4
S�⇥(⌧+1)+ktoct�t(2�2

S+oct�t))

(⌧+1)(�2
S+oct�t)2

0

!
+

✓
1

�foct

◆
�4
Skto

c
t(kt � (⌧ + 1)�⇥�f)

(�2
S + oct�t)2

(IA.57)

⌘ b�,t(n
i
t)�t + b⇥,t(n

i
t)⇥t, (IA.58)

and

BQ,t =
oct |�2

S(⌧ + 1)(kt � f��⇥) + ⌧kt�toct |
(⌧ + 1)(�2

S + �toct)
. (IA.59)

With these expressions can then compute t�statistics by simulations using Eq. (22).
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