
Data Abundance and Asset Price Informativeness

On-Line Appendix
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This note is the on-line appendix for “Data Abundance and Asset Price Informative-

ness.” It contains the proofs for findings mentioned in the paper but not proven there for

the sake of brevity. It is not intended for publication. The on-line appendix is organized

as follows.

• Section 1 derives the equilibrium demand for the raw signal (given in Lemma 1 in

the paper).

• Section 2 analyzes the case in which the upper bound on the mass of speculators,

i.e., ᾱ, is less than 2.

• Section 3 analyzes the case in which speculators can make their decision to buy the

processed signal contingent on the realization of the price at date 1.

• Section 4 completes Proposition 3 (case 2).

• Section 5 completes Proposition 4 by considering the case in which Cp > Cmin(θ, αe1),

derives sufficient and necessary conditions for ∂E2(Cr, Cp)/∂Cr > 0, and shows that

long run price informativeness jumps down when the market for the raw signal

takes off, provided the processed signal is produced when the raw signal is not (i.e.,

E2( θ8 , Cp) < E2(∞, Cp) if Cp ≤ Cmax(θ, 0)).
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• Section 6 shows that Cmax(θ, α1) decreases with α1 as claimed in the proof of Propo-

sition 3.

• Section 7 analyzes the case in which speculators who only buy one signal can trade

at both dates if they wish.

• Section 8 shows that it is optimal for speculators to trade when they receive their

signal if they cannot trade more than one share overall.

1 Equilibrium demand for the raw signal (Proof of

Lemma 1).

Let πgross,a1 (α1) = α1π̄1(α1) = α1 max
{
θ
2(1− α1), 0

}
be the aggregate gross expected

profit for speculators who receive the raw signal. We represent by αe1 the equilibrium

value of α1, the demand for the raw signal at date 1. Proceeding as in the market for the

processed signal, we deduce that if αe1 > 0 then αe1 solves:

πgross,a1 (αe1) = αe1 max
{
θ

2(1− αe1), 0
}

= Cr. (1.1)

As, πgross,a1 (α1) reaches its maximum for α1 = 1/2, we deduce that the previous equation

has no solution if Cr > θ
8 . In this case, for all values of α1, πgross,a1 (α1) < Cr and therefore

there is no fee at which trades between the seller of the raw signal and buyers of this

signal are mutually beneficial. Thus, in this case, αe1 = 0.

For Cr < θ
8 , eq.(1.1) has two solutions in (0, 1). As explained in the text, we select the

highest as the equilibrium demand since it yields the lowest fee charged by the information

seller. This solution is:

αe1 = 1
2 +

√
1
4 −

2Cr
θ
, (1.2)

and the corresponding equilibrium fee is therefore F e
1 = Cr/α

e
1. Last, if Cr = θ

8 , the only

solution to eq.(1.1) is αe1 = 0.
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2 The case in which ᾱ ≤ 2.

In equilibrium speculators’ demands for each type of signal (i.e., αe1 and αe2) must satisfy:

0 ≤ αe1 ≤ ᾱ, and 0 ≤ αe2 ≤ ᾱ.

When ᾱ > 2, the right hand sides of these constraints are never binding (as αe2 ≤ 2

and αe1 ≤ 1). This is the case on which we focused in the baseline version of the model.

In contrast, when ᾱ ≤ 2, these constraints can be binding, in which case one obtains a

corner solution for equilibrium demands. We discuss each case in turn below. Note that

a corner solution obtains for the demand for the raw signal iff Cr >
θ
8 (in which case

αe1 = 0) or Cr < Ĉr (in which case αe1 = 1), where Ĉr = θ
2(1

4 − (min{(ᾱ− 0.5), 0})2).

1. Case 1. The zero profit conditions eq.(19) in the text and eq.(1.1) in this appendix

have solutions αe1 and αe2 such that 0 < αe1 < ᾱ and 0 < αe2 < ᾱ. In this case, the

equilibria of the markets for the raw signal and the processed signal are interior.

This case is identical to that analyzed in the paper and all results are identical to

those obtained when ᾱ > 2.

2. Case 2. The equilibrium demand for (i) the raw signal is a corner solution, that

is αe1 = 0 (if Cr > θ
8) or αe1 = ᾱ (if Cr < Ĉr) and (ii) the equilibrium demand for

the processed signal is interior (0 < αe2 < ᾱ). In this case, the cost of producing

the raw signal Cr has (locally) no impact on αe1 and thus has no local effect on αe2.

Therefore, if Cr < Ĉr or Cr > θ
8 then a small change in the cost of the raw signal

has no effect on asset price informativeness or trade and price patterns. For other

values of Cr, results are identical to that in the text.

3. Case 3. The equilibrium demand for the processed signal is a corner solution, that

is αe2 = 0 or αe2 = ᾱ. Thus, αe2 does not depend on αe1 since its value is either zero

or ᾱ. Therefore, a change in cost of the raw signal Cr has (locally) no impact on

αe2. Thus, it does not affect price informativeness in the long run.
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3 Speculators can buy the processed signal at date

2.

In this section, we consider the case in which speculators can buy the processed signal

after observing the price of the asset at date 1, i.e., just before trading at date 2. The

equilibrium of the market for the raw signal is unchanged in this case and is still given

by the second part of Lemma 1. The main difference with the case considered in the text

is that (i) the demand for the processed signal at date 2, α2, depends on p1, the price of

the asset at the end of the first period and (ii) the seller the processed signal can charge

a different fee for this signal depending on the price realized at date 1.

We consider two subcases. In the first case (Section 3.1), we assume that the seller

of the processed signal pays the fixed cost of information processing after observing the

realization of the price at date 1. In the second case (Section 3.2), we assume that this cost

is paid before observing the realization of the price at date 1. The break-even conditions

for the information seller differ in each case. In the second case, the information seller

must set its fees for the processed signal so that it covers its fixed cost of producing

the signal on average across the possible realizations for the price at date 1. In the

first case, the information seller sets its fee so that it breaks even conditional on each

realization of the price at date 1. The two cases yield an identical equilibrium outcome

when there is a demand for the processed signal for each realization of the price at date

1. Equilibrium outcomes (e.g., the fees for the processed signal) differ when the demand

for the processed signal is nil for some realization of the price at date 1. However, we

show that the implications obtained in the baseline model (about price informativeness

and price and trade patterns) are preserved in each case.

3.1 Investment in information processing takes place after the

realization of the price at date 1

At the end of the first period, there are three possible outcomes (see Panel A of Figure

3 in the text) : (i) the asset price has not changed, p1 = p0; (ii) the asset price has
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increased p1 = 1+θ
2 ; (iii) the asset price has decreased p1 = 1−θ

2 . Due to the symmetry

of the model, the expected profit from trading on the processed signal is the same in the

last two cases. Thus, the decision to buy the processed signal is identical whether the

price has increased or decreased during the first period. This means that only two states

are relevant for the analysis of the market for information at date 2: either (i) the price

has not changed in the first period (p1 = p0) or (ii) the price has changed (p1 6= p0). We

denote by (αnc2 , F
nc
2 ) the equilibrium of the market for information in the first case and

by (αc2, F c
2 ) the equilibrium of this market in the second case ( superscript ”c” stands for

”change” while superscript ”nc” stands for no change).

Case 1: p1 6= p0. We first derive the equilibrium of the market for the processed

signal when p1 6= p0, i.e., (αc2, F c
2 ). As in the baseline model, (αc2, F c

2 ) must satisfy the

following zero profit conditions when αc2 > 0:

Zero profit for speculators: π̄net,c2 (αc2, F c
2 , θ) = πc2(αc2, θ)− F c

2 = 0. (3.1)

Zero profit for the information seller: Π̄seller,c
2 (αc2, F c

2 ) = αc2 × F c
2 − Cp = 0, (3.2)

where superscript c for expected profits indicates that these profits are computed condi-

tional on a price change in the first period. If there is no solution (αc2, F c
2 ) to this system

of equations for which αc2 > 0 then the market for the processed signal is inactive when

p1 6= p0 and we set αc2 = 0.

As p1 6= p0, the gross expected profit (per speculator) from trading on the processed

signal is (see Step 3 in the proof of Proposition 2 in the text for a derivation):

πc2(αc2) = θ(1− θ)(1− αc2).

Thus, in aggregate, speculators’ net expected profit is:

πnet,c,a2 (αc2, Cp) = αc2 × (πc2(αc2)− F c
2 ) = αc2θ(1− θ)(1− αc2)− Cp,

where the second equality follows from eq.(3.2). In equilibrium, if αc2 > 0, speculators’ net
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expected profit must be equal to zero (see eq.(3.1)). Thus, we deduce from the previous

equation that αc2 solves:

πnet,a,c2 (αc2, Cp) = αc2θ(1− θ)(1− αc2)− Cp = 0. (3.3)

As in the baseline model, if eq.(3.3) has multiple positive solutions then we retain the

highest because it yields the smallest (hence most competitive) fee for the information

seller. If eq.(3.3) has no positive solution then the market for information for the processed

signal is inactive (i.e., αc2 = 0) when p1 6= 1/2. Solving for eq.(3.3), we obtain:

αc2(θ, Cp) =


1
2 +

(
1
4 −

Cp
θ(1−θ)

) 1
2 if 0 ≤ Cp ≤ θ(1−θ)

4 ,

0 if Cp > θ(1−θ)
4 ,

(3.4)

It follows from eq.(3.2) that the equilibrium fee for the processed signal is F c
2 = Cp

αc2
when

αc2 > 0.

Case 2: p1 = p0 = 1/2. In this case, there is no change in the price at date 1. The

net expected profit (per speculator) from trading on the processed signal is then (see Step

3 in the proof of Proposition 2 in the text for a derivation):

πnc2 (α2) =


θ

2(2−θ) (2− θ − α2) if α2 ≤ 1,

θ
2

1−θ
2−θ (2− α2) if α2 > 1,

(3.5)

where superscript nc for the expected profit indicates that it is computed conditional on

no price change in the first period. We can then solve for the equilibrium demand for the

processed signal as in the case in which p1 6= 1/2. After some algebra, we obtain:

αnc2 (θ, Cp) =



1 +
(
1− 2(2−θ)

θ(1−θ)Cp
) 1

2 if Cp ≤ θ
2

1−θ
2−θ ,

2−θ
2 +

(
(2−θ)2

4 − 2(2−θ)
θ

Cp
) 1

2 if θ
2

1−θ
2−θ < Cp ≤ θ(2−θ)

8

0 if Cp > θ(2−θ)
8 ,

(3.6)
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Thus, when p1 = 1/2, it follows from eq.(3.2) that the equilibrium fee for the processed

signal is F nc
2 = Cp

αnc2
when αnc2 > 0. .

Using the expressions for αc2 and αnc2 (eq.(3.4) and eq.(3.6)), it is easily shown that

αc2 < αnc2 when Cp > 0. Thus, the demand for processed information is smaller when

prices have changed at date 1 than when they have not. In equilibrium, the expected

demand for the processed signal in equilibrium is:

E(αe2) = Pr(p1 6= p0)αc2 + (1− Pr(p1 6= p0))αnc2 = α1α
c
2 + (1− α1)αnc2 ,

where αe2 denotes the realization of the demand for the processed signal at date 2 (i.e., αc2
or αnc2 ). An increase in the demand for the raw signal increases the probability that the

price changes at date 1 since Pr(p1 6= p0) = α1. As the demand for the processed signal

is smaller when the asset price changes at date 1 than when it does not (αc2 < αnc2 ), we

obtain the following result.

Proposition 3.1. The expected demand for the processed signal in equilibrium decreases

with the demand for the raw signal, that is, ∂E(αe2)
∂α1

< 0. Thus, a decrease in the cost of

the raw signal reduces the expected demand for the processed signal in equilibrium.

This result is the analog of Proposition 3 in the baseline model. It is stronger in the

sense that it holds for all parameter values. Figure 3.1 illustrates the previous proposition

for specific parameter values.

Asset price informativeness at date t=2. We now study the effect of a reduction

in the cost of producing the raw signal on the informativeness of the price at date 2. As

in the baseline model, we define asset price informativeness at date 2 as:

E2(Cr, Cp) = 1
4 − E[(Ṽ − p∗2)2], (3.7)

where p∗2 denotes the realization of the equilibrium price at date 2. We obtain the following

result.

Proposition 3.2. If Cp ≤ θ(2−θ)
8 then
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E[α2
e ]

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0.0

0.5

1.0

1.5

Cr (θ=0.75, Cp=0.06)

Figure 3.1: Expected demand for the processed signal (E(αe2))

1. When θ ≤ 1/2, a decrease in the cost of producing the raw signal reduces asset price

informativeness at date 2.

2. When θ > 1/2, a decrease in the cost of producing the raw signal reduces asset

price informativeness at date 2 iff Cp ≤ C̄p where C̄p is a threshold that belongs to[
θ(1−θ)
2(2−θ) ,

θ(2−θ)
8

]
Thus, when Cp <

θ(2−θ)
8 , the informativeness of the price at date 2 can decline when

Cr declines as emphasized by Proposition 4 in the paper. Figure 3.2 illustrates this claim

for specific parameter values.

ℰ1
* (Cr ,Cp)

ℰ2
* (Cr ,Cp)

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0.00

0.05

0.10

0.15

Cr (θ=0.75, Cp=0.06)

Figure 3.2: The informativeness of the price at date 2
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When Cp >
θ(2−θ)

8 , the cost of producing the processed signal is so high that there

is no fee at which it can be profitably produced (i.e., a which buyers and sellers of the

processed signal can mutually trade), for all possible realizations of the price at date 1.

Thus, the processed signal is not produced and the informativeness of the price at date

2 is equal to that at date 1. The latter increases when α1 increases and therefore, in this

case, a reduction in the cost of the raw signal raises price informativeness at date 2 as

well.

Price and trade patterns. If Cr ≤ θ/8, some speculators buy the raw signal (see

Lemma 1 in the text of the paper) . Using Proposition 1 in the paper, we can write the

equilibrium strategy of a speculator receiving the raw signal, s, as

x∗1(s, Cr) = Is=1 − Is=0 = u× [IV=1 − IV=0] + (1− u)× [Iε=1 − Iε=0]. (3.8)

If Cr > θ
8 , no speculator buys the raw signal in equilibrium and therefore x∗1(s, Cr) = 0.

In sum:

x∗1(s, Cr) =


Is=1 − Is=0 = u× [IV=1 − IV=0] + (1− u)× [Iε=1 − Iε=0] if 0 ≤ Cr ≤ θ/8,

0 if Cr > θ/8.
(3.9)

Similarly, using Proposition 2 in the paper, we can write the optimal trading strategy of

speculators at date 2 as:

x∗2(p1, u, Cp) =



u× [IV=1 − IV=0] + (1− u)× [Ip1=(1−θ)/2 − Ip1=(1+θ)/2] if 0 ≤ Cp ≤ θ(1−θ)
4 ,

u× [IV=1 − IV=0]× Ip1=1/2 if θ(1−θ)
4 < Cp ≤ θ(2−θ)

8 ,

0 if Cp > θ(2−θ)
8 ,

(3.10)

where the last equality follows from the fact that there is no demand for the processed

signal if Cp > θ(2−θ)
8 .

Now, assume Cr ≤ θ
8 and Cp ≤ θ(2−θ)

8 . These assumptions guarantee that some

speculators trade at date 1 (x∗1 6= 0) and that some speculators trade at date 2 at least if
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p1 = 1/2. Using eq.(3.9) and eq.(3.10), we obtain:

Cov(x∗1, x∗2) =


θ(1− αe1), if Cp > θ(1−θ)

4 ,

θ − (1− θ)αe1, if Cp ≤ θ(1−θ)
4 .

Thus, as implied by Corollary 4 in the baseline model, we obtain that Cov(x∗1, x∗2) declines

when αe1 increases, i.e., when the cost of the raw signal decreases. Moreover, when Cp ≤
θ(1−θ)

4 , one obtains exactly the same expression for the covariance as that in Corollary 4

in the baseline model. Thus, as in this case, Cov(x∗1, x∗2) becomes negative if θ < 1/2 and

Cr is small enough.

Using the expression for the equilibrium price at date 1 (Proposition 1 in the paper)

and eq.(3.10), we also obtain

Cov(r1, x
∗
2) = E

[(
p1 −

1
2

)
x2

]
=


0, if Cp > θ(1−θ)

4 ,

θ(2θ − 1)αe1, if Cp ≤ θ(1−θ)
4 (as in the paper),

where r1 = p∗1 − p0 is the return from date 0 to date 1. Thus, when Cp ≤ θ(1−θ)
4 (so that

some speculators buy the processed signal whether the price at date 1 has changed or

not), we obtain the same expression for Cov(r1, x
∗
2) as that in Corollary 5 in the paper.

Otherwise Cov(r1, x
∗
2) is zero. Hence, Corollary 5 holds true even if speculators can make

their decision to buy the processed signal contingent on the price realized at date 1.

Last consider Cov(x∗1, r2) where r2 = (p∗2 − p∗1) is the return from date 1 to date 2.

Calculations yield:

Cov(x∗1, r2) =


θ(1−αe1)αnc2

2(2−θ) , when Cp >
θ(1−θ)
2(2−θ) ,

θ(1−αe1)(1+(1−θ)(αnc2 −1))
2(2−θ) , when Cp ≤ θ(1−θ)

2(2−θ) .

Observe that this is the same expression as that obtained in the baseline model (see

eq.(27)), with αnc2 replacing αe2. The intuition is the following. In equilibrium, the

innovation in r2 = (p∗2 − p∗1) is orthogonal to dealers’ information set set at t = 1 since
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equilibrium prices follow a martingale. If the order flow at date 1 reveals the raw signal

then x∗1 is known to dealers at date 1 and therefore r2 = p∗2 − p∗1 is orthogonal to x∗1.

This means that if p∗1 6= 1/2 then r2 is orthogonal to x∗1. Thus, the covariance between

x∗1 and r2 is only driven by the cases in which p∗1 = 1/2, in which case, the demand for

the processed signal is αnc2 . This explains why only αnc2 affects Cov(x∗1, r2).

As αnc2 does not depend on αe1, we obtain that Cov(x1, r2) decreases when αe1 increases,

i.e., when Cr decreases, for the same reason as in the baseline model.

Proofs for Section 3.1

Proof of Proposition 3.1. When Cp >
θ(2−θ)

8 , the demand for the processed signal

is nil whether the price changes at date 1 or not. Thus, E[αe2] = 0 in this case. When
θ(2−θ)

8 ≥ Cp >
θ(1−θ)

4 , the demand for the processed signal is nil if the price changes at

date 1 and strictly positive otherwise. Thus, in this case, E[αe2] = (1 − α1)αnc2 , which is

clearly decreasing with α1. Finally, when Cp ≤ θ(1−θ)
4 , we have, using the expressions for

the equilibrium demand for the processed signal:

E[αe2] = (1− α1)
1 +

(
1− 2(2− θ)

θ(1− θ)Cp
) 1

2
+ α1

1
2 +

(
1
4 −

Cp
θ(1− θ)

) 1
2
 ,

which decreases with α1 since
(

1
4 −

Cp
θ(1−θ)

) 1
2 ≤ 1/2.

Proof of Proposition 3.2. First, observe that E2(Cr, Cp) is inversely and linearly

related to E[(Ṽ − pe2)2]. It is easily shown that E[(Ṽ − p∗2)2] = E[p∗2(1− p∗2)]. To obtain

the proposition, we can therefore analyze how E[p∗2(1− p∗2)] varies with Cr.

We first compute E[p∗2(1 − p∗2)]. If αnc2 ≤ 1, we obtain (e.g., using Figure 3, in the
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paper):

E[p∗2(1− p∗2)] = α1 ×
[
(1− θ)αc2 ×

1
4 + (1− αc2)× (1− θ)(1 + θ)

4

]

+ (1− α1)×
[
(1− αnc2 )× 1

4 +
(
αnc2
2 + (1− θ)αnc2

2

)
× 1− θ

(2− θ)2

]

= 1
4α1[1− θ + (1− θ)θ(1− αc2)] + 1

4(1− α1)
[
1−

(
1− 2(2− θ) 1− θ

(2− θ)2

)
αnc2

]

= 1
4α1[1− θ + (1− θ)θ(1− αc2)] + 1

4(1− α1)
(

1− θ

2− θα
nc
2

)

= 1
4α1(1− θ) + 1

4α1(1− θ)θ(1− αc2) + 1
4(1− α1)θ

(
1− 1

2− θα
nc
2

)
+ 1

4(1− α1)(1− θ)

= 1
4(1− θ) + 1

4α1π
c
2(αc2) + 1

2(1− α1)πnc2 (αnc2 ).

Similarly, if 1 ≤ αc2 ≤ 2, we obtain:

E[p∗2(1− p∗2)] = α1 ×
[
(1− θ)αc2 ×

1
4 + (1− αc2)× (1− θ)(1 + θ)

4

]

+ (1− α1)×
[
(1− θ)(αnc2 − 1)× 1

4 +
(

2− αnc2
2 + (1− θ)(2− αnc2 )

2

)
× 1− θ

(2− θ)2

]

= 1
4α1(1− θ) + 1

4α1π
c
2(αc2)

+ 1
4(1− α1)(1− θ) + (1− α1)×

[
(1− θ)(αnc2 − 2)× 1

4 + 2− αnc2
2 (2− θ)× 1− θ

(2− θ)2

]

= 1
4α1(1− θ) + 1

4α1π
c
2(αc2)

+ 1
4(1− α1)(1− θ) + 1

2(1− α1)×
[

1− θ
2− θ −

1− θ
2

]
(2− αnc2 )

= 1
4α1(1− θ) + 1

4α1π
c
2(αc2)

+ 1
4(1− α1)(1− θ) + 1

2(1− α1)θ(1− θ)2(2− θ)(2− αnc2 )

= 1
4(1− θ) + 1

4α1π
c
2(αc2) + 1

2(1− α1)πnc2 (αnc2 )

Thus, in all cases:
∂E[p∗2(1− p∗2)]

∂α1
= πc2(αc2)− 2πnc2 (αnc2 )

4 . (3.11)

Thus, a reduction in Cr (i.e., an increase in α1) increases the informativeness of the price

at date 2 (i.e., reduces E[p∗2(1− p∗2)]) if and only if πc2(αc2) < 2πnc2 (αnc2 ). Now we analyze
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when this is the case and when it is not. For this, note that: πc2(αc2) = Cp/α
c
2 if αc2 > 0

and πc2(0) = θ(1− θ) if αc2 = 0. Similarly, πnc2 (αnc2 ) = Cp/α
nc
2 if αnc2 > 0 and πc2(0) = θ/2

if αnc2 = 0 (see eq.(3.5)).

• If Cp > θ(2−θ)
8 , αnc2 = αc2 = 0. In this case, using eq.(3.11), we deduce from the

previous remarks that:
∂E[p∗2(1− p∗2)]

∂α1
= −θ

2

4 < 0,

which is decreasing with α1.

• If θ(1−θ)
4 < Cp ≤ θ(2−θ)

8 we have αc2 = 0 and αnc2 > 0. In this case, In this case, using

eq.(3.11), we obtain that:

∂E[p∗2(1− p∗2)]
∂α1

= θ(1− θ)− Cp/αnc2 . (3.12)

Thus, the pricing error increases with α1 if and only if

αnc2 (θ, Cp) ≥
2Cp

θ(1− θ) . (3.13)

Using eq.(3.6), we deduce that αnc2 (θ, Cp) increases when Cp decreases. And using

eq.(3.11), we deduce that the derivative of the pricing error with respect to α1

increases when Cp decreases. We also observe that when Cp ≤ θ(1−θ)
2(2−θ) , α

nc
2 ≥ 1 and

therefore eq.(3.13) is satisfied. Moreover, when Cp = θ(2−θ)
8 , αnc2 = 2−θ

2 . Thus, in this

case, eq.(3.13) is satisfied if and only if θ < 1/2. Combining these two observations,

we deduce that when θ(1−θ)
4 < Cp ≤ θ(2−θ)

8 , there is a C̄p ∈
[
θ(1−θ)
2(2−θ) ,

θ(2−θ)
8

]
such

that asset price informativeness decreases when Cr decreases if (i) θ < 1/2 or if (ii)

θ > 1/2 and Cp < C̄p.

• If Cp ≤ θ(1−θ)
4 , using eq.(3.11), we obtain that:

∂E[p∗2(1− p∗2)]
∂α1

= Cp
2

(
1

2αc2
− 1
αnc2

)
> 0, (3.14)

where the inequality follows from the fact that 2αc2 ≤ αnc2 when Cp ≤ θ(1−θ)
4 .
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3.2 Investment in information processing takes place before the

realization of the price at date 1

Now we consider the case in which the seller and the buyers of the processed signal

contract before observing the realization of the price at date 1 but the buyers can make

their decision to eventually buy the signal contingent on the realization of the price at

date 1. This corresponds to the case in which (i) information processing must start early

at date 1 for the processed signal to be delivered in time at date 2 and (ii) the seller

offers a schedule (F c
2 ,F nc

2 ), i.e., a fee for the processed signal that is contingent on the

realization of the price. A speculator can then decide to buy the processed signal only

when (i) the price has changed at date 1, (ii) only when the price has not changed or (iii)

in both cases.

Denote Rnc
2 = αnc2 F

nc
2 and Rc

2 = αc2F
c
2 . An equilibrium of the market for the processed

signal is a vector (αnc2 , α
c
2, F

nc
2 , F nc

2 ) such that:

Zero profit for speculators if p1 6= p0: π̄net,c2 (αc2, F c
2 , θ) = πc2(αc2, θ)− F c

2 = 0. (3.15)

Zero profit for speculators if p1 = p0: π̄net,c2 (αc2, F c
2 , θ) = πc2(αc2, θ)− F c

2 = 0. (3.16)

Zero profit for the information seller:

Π̄seller
2 (αnc2 , α

c
2, F

c
2 , F

nc
2 ) = Pr(p1 6= p0)Rc

2+(1−Pr(p1 6= p0))Rnc
2 −Cp = α1R

c
2+(1−α1)Rnc

2 −Cp = 0.

(3.17)

The only difference with the case analyzed in Section 3.1 is the zero profit condition for

the seller of the processed signal. This condition accounts for the fact that the information

seller must pay the fixed cost of information processing before knowing whether p1 6= p0

(which happens with probability Pr(p1 6= p0) = α1) or p1 = p0 (which happens with

probability (1− α1)).

Note that Rnc
2 = αnc2 F

nc
2 and Rc

2 = αc2F
c
2 are the revenues of the seller of the processed

signal conditional on the two possible outcomes at the end of period 1: (i) no change (nc)

in the price of the asset or (i) a change (c) in the price of the asset. These revenues are
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bounded by the largest possible value for the aggregate expected profits from trading on

the processed signal conditional on each possible outcome, that is:

Rnc
2 ≤

θ(2− θ)
8 , and Rc

2 ≤
θ(1− θ)

4

Thus, the largest possible expected profit for the seller of the processed signal is Π̄(α1) ≡

(1−α1) θ(2−θ)8 +α1
θ(1−θ)

4 We deduce that a necessary condition for the seller of the processed

signal to pay the fixed cost of producing this signal is that:

Cp ≤ Π̄(α1). (3.18)

Henceforth we assume that this condition is satisfied. Otherwise the processed signal is

not produced and αc2 = αnc2 = 0.

Observe that there might be multiple pairs (Rc
2, Rnc

2 ) for the zero expected profit

condition for the seller of the processed signal (in eq.(3.2)), which leads to the possibility

of multiple equilibria in the market for the processed signal. When this happens, we we

select the equilibrium that minimize the variance of revenues for the information seller,

i.e., (Rnc
2 −Rc

2)2 since the seller’s revenue is binomial random variable. Indeed, this would

be the strictly preferred outcome for the information seller if it is risk averse.

We can rewrite the zero profit condition (3.17):

Rnc
2 −Rc

2 = Cp −Rc
2

1− α1
(3.19)

We then consider two cases. The first case arises when Cp ≤ θ(1−θ)
4 . In this case, the

variance of revenues is minimized for Rc
2 = Cp and is equal to zero, so that Rnc

2 = Cp as

well. This outcome is possible because Cp < θ(1−θ)
4 , the largest possible value for Rc

2. The

zero profit condition (3.2) can thus be replaced by two conditions:

αc2F
c
2 = Cp,
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and

αnc2 F
nc
2 = Cp.

The analysis is then identical to the case analyzed in Section 3.1. In particular, as in

Section 3.1, we obtain that the equilibrium demand for the processed signal when p1 6= p0

and when p1 = p0 are respectively:

αc2(θ, Cp) = 1
2 +

(
1
4 −

Cp
θ(1− θ)

) 1
2

(3.20)

and

αnc2 (θ, Cp) = 1 +
(

1− 2(2− θ)
θ(1− θ)Cp

) 1
2

(3.21)

The second case arises when θ(2−θ)
8 ≥ Cp >

θ(1−θ)
4 . In this case, the constraint that

Rc
2 ≤ θ(1− θ)/4 is binding. Inspection of eq.(3.19) shows that the equilibrium such that

the variance of revenues for the information seller is minimal is such that Rc
2 is set at

its maximal possible value, i.e., θ(1−θ)
4 , which is therefore the aggregate expected trading

profits obtained by speculators buying the processed signal when the price changes at

date 1. This implies that in this case the demand for the processed signal must be:

αc2 = 1
2 , (3.22)

and therefore F c
2 = θ(1 − θ)/2. Moreover, using eq.(3.19), we deduce that Rnc

2 must be

such that

Rnc
2 = αnc2 F

nc
2 = θ(1− θ)

4 +
Cp − θ(1−θ)

4
1− α1

.

Let denote the R.H.S of this equation by R(α1, Cp) (i.e., R(α1, Cp) = θ(1−θ)
4 + Cp− θ(1−θ)

4
1−α1

).

We can then derive the equilibrium demand for the processed signal when p1 = p0 as we

did in Section 3.1, except that the role of Cp is now played by R(α1, Cp). We deduce

that the demand the processed signal conditional on no change in the price of the asset
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at date 1 is:

αnc2 (α1, θ, Cp) =


1 +

(
1− 2(2−θ)

θ(1−θ)R(α1, Cp)
) 1

2 if θ(1−θ)
4 < R(α1, Cp) ≤ θ

2
1−θ
2−θ ,

2−θ
2 +

(
(2−θ)2

4 − 2(2−θ)
θ

R(α1, Cp)
) 1

2 if θ
2

1−θ
2−θ < R(α1, Cp) ≤ θ(2−θ)

8

(3.23)

In sum, the only difference with the case studied in Section 3, is the case where
θ(2−θ)

8 ≥ Cp >
θ(1−θ)

4 . There are two differences relative to what we obtain in 3.

First, even if the price changes at date 1, there is a demand for the processed signal

when Cp >
θ(1−θ)

4 while this demand was nil in the case considered in Section 3. The

reason is that conditional on the realization of this state (a change in price), the infor-

mation seller sells the processed signal at a price that is too low to recover its fixed cost

of producing the signal. As this cost has been sunk, selling the signal is optimal anyway

but, in this state, the fee charged for the signal is less than the cost of producing it. This

implies that when p1 = p0, the seller of the processed signal sells it at a price that exceeds

his fixed cost of producing the processed signal. This price cannot be profitably undercut

because the decision to produce the processed signal (and pay the associated fixed cost)

must be made before observing the realization of the price of the asset at date 1.

Second, αnc2 is negatively related to α1. Yet, as in Section 3.1, we still have αnc2 > αc2.

Moreover, the expected demand for information is equal to E(αe2) = α1
1
2 +(1−α1)αnc2 (α1).

As in Section 3.1, the expected demand for the processed signal decreases with the de-

mand for the raw signal since E(αe2) = α1
1
2 + (1−α1)αnc2 (α1) and αnc2 (α1) decreases with

α1.

Asset price informativeness at date t=2. As in Section 3, we analyze the effect of

a reduction of Cr (i.e., an increase in α1) on the informativeness of prices at t = 2.

Proposition 3.3. If Cp > Π̄(α1), a decrease in the cost of producing the raw signal

improves asset price informativeness at date 2. If Cp ≤ Π̄(α1) then there is a C̄p(α1) ∈[
θ(1−θ)

4 , Π̄(α1)
]

such that a decrease in the cost of producing the raw signal reduces asset
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price informativeness at date 2 if and only if Cp < C̄p(α1).

Qualitatively, we find the same result as in Section 3.1: when the cost of producing

processed information is “high”, a decrease in the cost of producing the raw signal im-

proves asset price informativeness at date 2, and conversely when the cost of producing

processed information is “low”.

Price and trade patterns. As speculators are either active in both cases (“c” or “nc”)

or not at all, a speculator’s trade at t = 2 is as follows,

x∗2(p1, u, Cp) =


0 if Cp > Π̄(α1),

u× [IV=1 − IV=0] + (1− u)× [Ip1=(1−θ)/2 − Ip1=(1+θ)/2] if 0 ≤ Cp ≤ Π̄(α1).
(3.24)

Therefore, proceeding as in Section 3.1, we obtain:

Cov(x∗1, x∗2) =


0, if Cp > Π̄(α1),

θ − (1− θ)αe1, if Cp ≤ Π̄(α1).

Cov(r1, x
∗
2) = E

[(
p1 −

1
2

)
x2

]
=


0, if Cp > Π̄(α1),

θ(2θ − 1)αe1, if Cp ≤ Π̄(α1).

Cov(x∗1, r2) =



0, if Cp > Π̄(α1),

θ(1−αe1)αnc2 (α1)
2(2−θ) , if θ(1−θ)

4 < Cp ≤ Π̄(α1) and R(α1, Cp) > θ(1−θ)
2(2−θ) ,

θ(1−αe1)(1+(1−θ)(αnc2 (α1)−1))
2(2−θ) , if θ(1−θ)

4 < Cp ≤ Π̄(α1) and R(α1, Cp) ≤ θ(1−θ)
2(2−θ) ,

θ(1−αe1)(1+(1−θ)(αnc2 −1))
2(2−θ) , if Cp ≤ θ(1−θ)

4 .

The expression of covariances Cov(x∗1, x∗2) and Cov(r1, x
∗
2) are as in the paper. The only

difference is the threshold Π̄(α1) that replaces Cmax. Compared to Section 3.1, we lose

the “intermediate” cases which correspond to the situation where αc2 = 0 and αnc2 > 0,

when θ(2−θ)
8 ≥ Cp >

θ(1−θ)
4 .

Cov(x∗1, r2) admits more cases than in the paper or in Section 3.1. Notice that in the
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second and third cases, α1 also enters the expression via αnc2 (α1), which is not the case

in the fourth case, and in Section 3. Yet, in all cases, Cov(x∗1, r2) decreases with α1, as

in Section 3.1.

Proofs for Section 3.2

Proof of Proposition 3.3. When Cp > Π̄(α1), we have αnc2 = αc2 = 0 then informative-

ness increases with α1 as in Proposition 3.2, when Cp >
θ(2−θ)

8 .

When Cp > θ(1−θ)
4 Using equation (3.11), we can calculate the derivative of the pricing

error with respect to α1 as follows

∂E[p∗2(1− p∗2)]
∂α1

= πc2(1/2)− 2πnc2 (αnc2 )
4 = 1

4

θ(1− θ)
2 − 2

αnc2

θ(1− θ)
4 +

Cp − θ(1−θ)
4

1− α1

 ,
We can first notice that this derivative is decreasing function of Cp since αnc2 declines

with Cp and πnc2 (αnc2 ) declines with αnc2 .

Second, the derivative can be rewritten as

1
4

θ(1− θ)
2

(
1− 1

αnc2

)
− 2
αnc2

Cp − θ(1−θ)
4

1− α1

 .

If θ
2

1−θ
2−θ ≤ R(α1, Cp) ≤ θ(2−θ)

8 , we have αnc2 ≤ 1, then the derivative of the pricing error is

negative. It follows that price informativeness increases with α1.

When R(α1, Cp) < θ
2

1−θ
2−θ , α

nc
2 > 1. Consider the case where R(α1, Cp) converges

to θ(1−θ)
4 , or equivalently Cp converges to θ(1−θ)

4 from above. The derivative converges

towards
θ(1− θ)

8

(
1− 1

αnc2

)
> 0.

Since ∂E[p∗2(1−p∗2)]/∂α1 is a decreasing function of Cp, it follows that there is a threshold

C̄p(α1) such that price informativeness decreases with α1, i.e., ∂E[p∗2(1− p∗2)]/∂α1 > 0, if

and only if Cp < C̄p(α1).

When Cp ≤ θ(1−θ)
4 , we are in the same case as in Proposition 3.2. Asset price infor-

mativeness decreases with α1.
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4 Complement to the proof of Proposition 3.

Let ᾱ1(θ) = (1−θ)2+θ2

(1−2θ)[2(1−θ)(2−θ)−1] and C̄p(θ) = (θ(1−θ)2)(1−2θ)
(2−θ)(2(1−θ)− 1

2−θ )
2 . We first prove the following

result.

Lemma 4.1. For θ < 1/2 and Cmin(θ, α1) ≤ Cp < Cmax(θ, α1), ∂αe2
∂α1

> 0 if and only if (i)

θ <
√

2−1√
2 , (ii) α1 > ᾱ1(θ), and (iii) Cp > C̄p(θ).

Proof. When θ < 1/2, we know from Corollary 2 that ∂αe2
∂α1

> 0 if and only if

αe2(α1) < α̂2(θ) = (2− θ)(1− 2θ)
2(2− θ)(1− θ)− 1

Using the expression of αe2 in Lemma 1 in the text, we obtain that αe2(α1) < α̂2(θ) if and

only if

αmax2 (θ, α1)
(

1 +
√

1− Cp
Cmax(θ, α1)

)
< α̂2(θ). (4.1)

That is, if and only if

√
1− Cp

Cmax(θ, α1) <
α̂2(θ)

αmax2 (θ, α1) − 1. (4.2)

For this inequality to be verified, a necessary condition is that the right hand side is

positive. That is, we must have:

α̂2(θ) > αmax2 (θ, α1) = 1
2

1− (2θ − 1)α1
1

2−θ +
(
2(1− θ)− 1

2−θ

)
α1

(
= (2− θ)(1− (2θ − 1)α1)

2(1 + (2(2− θ)(1− θ)− 1)α1)

)
.

(4.3)

Observe that αmax2 (θ, α1) decreases with α1. Moreover, αmax2 (θ, 0) = (2 − θ)/2 and

αmax2 (θ, 1) = 1/2. We have:

αmax2 (θ, 0)− α̂2(θ) = 2− θ
2 − 1− 2θ

2(1− θ)− 1
2−θ

= 2(1− θ)(2− θ)− 1− 2(1− 2θ)
2
(
2(1− θ)− 1

2−θ

)
= 2(1− θ)(2− θ)− 4(1− θ) + 1

2
(
2(1− θ)− 1

2−θ

) = −2θ(1− θ) + 1
2
(
2(1− θ)− 1

2−θ

) > 0,
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for θ ≤ 1/2. Moreover,

αmax2 (θ, 1)− α̂2(θ) = 1
2 −

1− 2θ
2(1− θ)− 1

2−θ
=

1− θ − 1
2(2−θ) − 1 + 2θ

2(1− θ)− 1
2−θ

=
θ − 1

2(2−θ)

2(1− θ)− 1
2−θ

=
θ(2− θ)− 1

2
2(1− θ)(2− θ)− 1

=
−(1− θ)2 + 1

2
2(1− θ)(2− θ)− 1 .

Therefore αmax2 (θ, 1)−α̂2(θ) > 0 iff θ >
√

2−1√
2 . Consequently if θ >

√
2−1√

2 then αmax2 (θ, α1)−

α̂2(θ) > 0 for all α1 and Condition (4.3) cannot hold true. Hence, ∂αe2
∂α1

> 0 cannot hold

true if θ >
√

2−1√
2 .

If θ <
√

2−1√
2 , there exists ᾱ1(θ) ∈ [0, 1] such that αmax2 (θ, ᾱ1(θ)) = α̂2(θ) and for all

α1 > ᾱ1(θ), αmax2 (θ, α1) < α̂2(θ), since αmax2 (θ, α1) is decreasing with α1. Solving the

equation αmax2 (θ, ᾱ1(θ)) = α̂2(θ) for ᾱ1(θ), we obtain:

ᾱ1(θ) = 1(
1− θ

1−θ

) [
2(2− θ)− 1

1−θ

] + θ2

(1− 2θ)[2(1− θ)(2− θ)− 1] . (4.4)

We deduce that for θ <
√

2−1√
2 , ᾱ1(θ) increases with θ. Moreover,

ᾱ1(0) = 1
3

and

ᾱ1(
√

2− 1√
2

) =
1
2 +

(
1− 1√

2

)2

(
√

2− 1)
[
2 1√

2

(
1 + 1√

2

)
− 1

] = 1.

Thus, if θ <
√

2−1√
2 and α1 > ᾱ1(θ), Condition (4.2) can be satisfied. This condition is

equivalent to:

Cp > C̄p(θ), (4.5)

where

C̄p(θ) ≡
Cmax(θ, α1)
αmax2 (θ, α1)2 (2αmax2 (θ, α1)− α̂2(θ))α̂2(θ)
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We have
Cmax(θ, α1)
αmax2 (θ, α1)2 = θ

2

[ 1
2− θ +

(
2(1− θ)− 1

2− θ

)
α1

]
.

Moreover:

2αmax2 (θ, α1)− α̂2(θ) = 1− (2θ − 1)α1
1

2−θ +
(
2(1− θ)− 1

2−θ

)
α1
− 1− 2θ

2(1− θ)− 1
2−θ

=
2(1−θ)2

2−θ(
2(1− θ)− 1

2−θ

) [
1

2−θ +
(
2(1− θ)− 1

2−θ

)
α1
]

Thus:

C̄p(θ) = θ(1− θ)2

2− θ
α̂2(θ)

2(1− θ)− 1
2−θ

= θ(1− θ)2

2− θ
1− 2θ(

2(1− θ)− 1
2−θ

)2 = θ(1− θ)2(2− θ)(1− 2θ)
(2(1− θ)(2− θ)− 1)2 .

This achieves the proof of Lemma 4.1.Q.E.D

Finally, we observe in equilibrium, the condition αe1(Cr) > ᾱ1(θ) is equivalent to:

Cr <
θ

2

(
1
4 −max

(
ᾱ1(θ)− 1

2 , 0
)2)

= C̄r(θ).

5 Sufficient and necessary conditions for ∂E2(Cr, Cp)/∂Cr >

0.

In Proposition 4, we have shown that if Cp < Cmin(θ, αe1) then a decrease in the cost

of producing the raw signal, Cr, reduce the informativeness of the price at date 2 (i.e.,

∂E2(Cr, Cp)/∂Cr > 0). We now derive sufficient and necessary conditions for this result

to hold when Cmin(θ, αe1) < Cp < Cmax(θ, αe1) (Case A). We also analyze the case Cp >

Cmax(θ, αe1) at the end of this section (Case B). Overall the conditions derived in Cases

A and B complete the proof of Proposition 4 and yields Figure 9 in the paper.

In case C, we show that long run price informativeness jumps down when the market

for the raw signal takes off provided the processed signal is produced when the raw signal

is not, i.e., E2( θ8 , Cp) < E2(∞, Cp) if Cp ≤ Cmax(θ, 0). This supports the claim in the two
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first paragraphs on page 32 in Section 6.1.

Case A. Consider the case in which Cmin(θ, αe1) < Cp < Cmax(θ, αe1). In this case,

0 < αe2 ≤ 1 (Proposition 1). Using eq.(13) and eq.(54), we have:

E2(Cr, Cp) = θ

4 −
1
2

(
π̄2(αe1, αe2)− θ(1− θ)

2 αe1(1− αe2)
)
, (5.1)

where we omit the arguments of functions αe1 and αe2 to simplify notations. As αe2 > 0,

in equilibrium, αe2π̄e2 = Cp (see eq.(18)). Thus, we can rewrite eq.(5.1) as:

E2(Cr, Cp) = θ

4 −
1
2

(
Cp
αe2
− θ(1− θ)

2 αe1(1− αe2)
)
, (5.2)

Using the fact that Cr affects αe2 only through its effect on αe1, we deduce from eq.(5.1)

that:

∂E2(Cr, Cp)
∂Cr

=
(

1
2
∂αe1
∂Cr

)(
∂αe2
∂αe1

(
Cp

(αe2)2 −
θ(1− θ)

2 αe1

)
+ θ(1− θ)

2 (1− αe2)
)
, (5.3)

As ∂αe1
∂Cr
≤ 0, we deduce that the sign of ∂E2(Cr,Cp)

∂Cr
is opposite to the sign of the following

function:

G(αe1, αe2) ≡ ∂αe2
∂αe1

(
Cp

(αe2)2 −
θ(1− θ)

2 αe1

)
+ θ(1− θ)

2 (1− αe2). (5.4)

To determine the sign of G(αe1, αe2), we first compute ∂αe2
∂αe1

. Using eq.(51), we obtain:

−∂α
e
2

∂αe1
=

∂[αe2π̄2(αe1,αe2)]
∂αe1

∂[αe2π̄2(αe1,αe2)]
∂αe2

=
αe2

∂π̄2(αe1,αe2)
∂αe1

αe2
∂π̄2(αe1,αe2)

∂αe2
+ π̄2(αe1, αe2)

.

Moreover, as 0 < αe2 ≤ 1, we deduce from Proposition 2 that:

π̄2(αe1, αe2) = θ

2

{
1− (2θ − 1)αe1 −

[ 1
2− θ +

(
2(1− θ)− 1

2− θ

)
αe1

]
αe2

}
.

This implies that

∂π̄2(αe1, αe2)
∂αe1

= −θ2

[
2θ − 1 +

(
2(1− θ)− 1

2− θ

)
αe2

]
,
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∂π̄2(αe1, αe2)
∂αe1

= −θ2

[ 1
2− θ +

(
2(1− θ)− 1

2− θ

)
αe1

]
.

Therefore,

−∂α
e
2

∂αe1
=

αe2
[
2θ − 1 +

(
2(1− θ)− 1

2−θ

)
αe2
]

αe2
[

1
2−θ +

(
2(1− θ)− 1

2−θ

)
αe1
]
− 2Cp

θ
1
αe2

.

The denominator of this expression is equal to −∂[αe2π̄2(αe1,αe2)]
∂αe2

, which is strictly positive

(see the discussion that precedes Lemma 1 in the paper or Figure 5). Hence, we deduce

that G(αe1, αe2) < 0 iff:

αe2

[
2θ − 1 +

(
2(1− θ)− 1

2− θ

)
αe2

] (2Cp
θ

1
(αe2)2 − (1− θ)αe1

)
,

− (1− θ)(1− αe2)
[
αe2

( 1
2− θ +

(
2(1− θ)− 1

2− θ

)
αe1

)
− 2Cp

θ

1
αe2

]
> 0

After some algebra, one can show that this condition is equivalent to:

Υ(Cr, Cp, θ) > 0,

where

Υ(Cr, Cp, θ) ≡
1− θ
2− θ

(2Cp
θ
− αe2(1− αe2)

)
+ 2Cp

(
1
αe2
− 1

)
− αe1αe2

(1− θ)2

2− θ . (5.5)

In sum, G(αe1, αe2) < 0 iff Υ(Cr, Cp, θ) > 0. Thus, when Cmin(θ, αe1) < Cp <

Cmax(θ, αe1), ∂E2(Cr,Cp)
∂Cr

> 0 iff Υ(Cr, Cp, θ) > 0. In other words, when Cmin(θ, αe1) <

Cp < Cmax(θ, αe1), a decrease in the cost of the raw signal lowers the informativeness of

the price at date 2 if and only if Υ(Cr, Cp, θ) > 0.

Case B. Last consider the case in which Cmax(θ, αe1) < Cp. In this case, no speculator

buys the processed signal (αe2 = 0). Thus, E2(Cr, Cp) = E1(Cr, Cp) (see eq.(54) in the

proof of Corollary 3). That is, long run price informativeness is equal to short run price

informativeness because there is no information production after date 1. In this case, a

decrease in Cr raises price informativeness simply because it raises the demand for the
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raw signal and thereby price informativeness at date 1.

Case C. Figure 5.1 plots for each pair (Cp, θ) the sign of E2( θ8 , Cp)− E2(Cr > θ
8 , Cp).

The grey (blue) area are the pairs for which this difference is negative (resp., positive).

The red curve plots Cmax(θ, 0) = θ(2−θ)
8 . For a given θ, if Cp is below this curve then

the demand for the process signal is strictly positive when there is no market for the

raw signal (α1 = 0). The graphic shows that for all pairs (Cp, θ) such this condition is

satisfied (Cp < Cmax(θ, 0)) then E2( θ8 , Cp) < E2(Cr > θ
8 , Cp).

1 This proves that long run

price informativeness jumps down when the market for the raw signal takes off provided

the processed signal is produced when the raw signal is not (i.e., E2( θ8 , Cp) < E2(∞, Cp)

if Cp ≤ Cmax(θ, 0)).
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C
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0.05

0.10

Cp=
θ (2-θ)

8

Figure 5.1

6 Proof that Cmax decreases with α1 when θ >
√

2−1√
2 .

Case 1. For θ > 1/2, we can write Cmax as

Cmax(θ, α1) = θ

4 ᾱ2(θ, α1)(1− (2θ − 1)α1),

1Note that Figure 5.1 covers all possible cases for the parameter values since Cr is fixed here. Thus,
a graphical proof is sufficient.

25



which is the product of two decreasing and positive functions of α1. Thus, in this case,

Cmax decreases with α1.

Case 2. For θ < 1/2, we use the fact that for a given α2, the aggregate speculators’

profit at t = 2, that is α2π̄2(α1, α2) can be written as

α2π̄2(α1, α2) = Cmax(θ, α1)
αmax2 (θ, α1)2 (2αmax2 (θ, α1)− α2)α2

= Cmax(θ, α1)
(

2− α2

αmax2 (θ, α1)

)
α2

αmax2 (θ, α1)

We know that for α2 = α̂2(θ), the expected profit π̄2(α1, α̂2(θ)) does not depend on α1.

Therefore the aggregate profit taken in α̂2(θ) is also independent of α1 and happen to be

equal to C̄p(θ) calculated previously. Indeed,

α̂2(θ)π̄2(α1, α̂2(θ)) = Cmax(θ, α1)
(

2− α̂2(θ)
αmax2 (θ, α1)

)
α̂2(θ)

αmax2 (θ, α1) = C̄p(θ) > 0. (6.1)

Notice that the the function h(x) = x(2− x) reaches a maximum for x = 1, increases

for x < 1 and decreases for x > 1. In previous section 4, we have shown that when

θ < 1/2, C̄p(θ) > 0, αmax2 (θ, α1) decreases with α1, and αmax2 (θ, α1) > α̂2(θ) if θ >
√

2−1√
2 .

Therefore, the ratio r(θ, α1) = α̂2(θ)
αmax2 (θ,α1) increases with α1, and is always less than 1.

Hence r(θ, α1)(2− r(θ, α1)) increases with α1. We deduce that Cmax(θ, α1) must decrease

with α1 since Cmax(θ, α1)r(θ, α1)(2− r(θ, α1)) is strictly positive and does not depend on

α1 (see eq.(6.1)).

7 Speculators can trade at both dates even if they

buy only one signal.

In this section we consider the case in which speculators who buy only one signal can

trade at both dates if they wish. We follow the same steps as in the baseline model.

In Section 7.1, we derive speculators’ equilibrium trading strategies (Proposition 7.1)

and their expected profits (Proposition 7.2), holding (α1, α2) constant. We then show
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in Section 7.2 that an increase in the demand for the raw signal can exert a positive or

negative externality on investors trading on the processed signal, as in the baseline model,

and we write conditions characterizing equilibrium demands for each type of signal. Using

these conditions, in Section 7.3, we show numerically that a decrease in the cost of the

raw signal can lead to a decrease in long run price informativeness, as in the baseline

model. In Section, 7.4, we show that the implications of the model for price and trade

patterns are preserved in this extension.

7.1 Equilibrium strategies and profits

It is straightforward to show that, at date t = 1, the equilibrium is the same as in

the baseline model. In particular, speculators who only buy the raw signal behaves as

described in Proposition 1 in the paper while speculators who only buy the processed

signal do not trade. Indeed, the latter expects to trade at E(p∗1) = p0, which is just their

valuation for the asset given that they have no information at date 1.

Thus, as in the baseline model, there are two possible outcomes at date 1: (i) either the

price has changed relative to date 0 (with probability α1) or (ii) it has not changed (with

probability (1− α1)). If the price has changed at date 1, it fully reflects the information

in the raw signal. In this case, speculators who only purchase the raw signal cannot

profitably trade at date 2 since they have no informational advantage relative to the

dealers. Thus, the equilibrium at date 2 is identical to that in the baseline model if the

price changes at date 1. Hence, in this case, speculators trading on the raw signal gets a

zero expected profit at date 2 while speculators who trade on the processed signal obtain

the same expected profit as in the baseline model, i.e., πc2(α2) = θ(1− θ) max[1− α2, 0].

If the price does not change at date 1, speculators who only purchase the raw signal

might find optimal to trade again at date 2 (see below). We denote by π1,nc
2 (α1, α2),

the expected profit of a raw signal speculator in this case. Hence, the ex-ante expected

trading profit of trading on the raw signal is:

π̄1(α1, α2) = π1(α1) + (1− α1)π1,nc
2 (α1, α2) (7.1)
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with π1(α1) = θ
2 max[1− α1, 0].

Similarly, we denote by π2,nc
2 (α1, α2), the expected profit of trading on the processed

signal when the price has not changed at t = 1. The total expected profit of trading on

the processed signal is therefore:

π̄2(α1, α2) = α1π
c
2(α2) + (1− α1)π2,nc

2 (α1, α2). (7.2)

Lemma 7.1. If π1,nc
2 (α1, α2) > 0 then no speculator buys both signals.

Proof. The expected profit of a speculator who buys the raw and the processed signals

net of the fees charged by information sellers is:

π1(α1) + π̄2(α1, α2)− Fr − Fp = π1(α1)− Fr < π̄1(α1, α2)− Fr,

where the second equality follows from the fact that, in equilibrium, the fee charged for

the processed signal is such that π̄2(α1, α2) = Fp and the last inequality from eq.(7.1) and

the condition π1,nc
2 (α1, α2) > 0. This inequality implies that buying only the raw signal

dominates buying both signals when π1,nc
2 (α1, α2) > 0.

Thus, in the rest of this section, we call speculators who only trade on the raw

signal as “raw information speculators” and those who only trade on the processed signal

as “processed information speculators”. The next proposition describes the equilibrium

trading strategies of both types of speculators at date 2 when the price has no changed at

date 1. An equilibrium of the market at date 2 when the price has not changed at date 1 is

a triplet (x∗2r(s), x∗2(s, u), p∗2(f2)) such that (i) p∗2(f2) is equal to the expected payoff of the

asset given f2, (ii) each speculator receiving the raw signal maximizes his expected profit

by trading x∗2r(s) shares given other speculators’ trading strategies and the market maker’s

pricing policy (p∗2(f2)) and (iii) each speculator receiving the processed signal maximizes

his expected profit by trading x∗2p(s, u) shares given other speculators’ trading strategies

and and the market maker’s pricing policy (p∗2(f2)). Let denote k = min [α1/α2, 1],

α = α1 + α2, and β = α1 − k × α2.
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Proposition 7.1. At t = 2, when the price has not changed at t = 1,

1. The speculators who receive the raw signal buy one share when s = 1 and sell one

share when s = 0, i.e., x∗2r(1) = 1 and x∗2r(0) = −1.

2. The speculators who receive the processed signal buy one share when (s, u) = (1, 1),

sell one share when (s, u) = (0, 1), sell k shares when (s, u) = (1, 0), and buy k

shares when (s, u) = (0, 0). That is, x∗2p(1, 1) = 1, x∗2p(0, 1) = −1,x∗2p(1, 0) = −k,

and x∗2p(−1, 0) = k.

3. The equilibrium price is:

p∗2(f2) =
θφ(f2 − α) + 1−θ

2 φ(f2 + β) + 1−θ
2 φ(f2 − β)

θ
2φ(f2 − α) + θ

2φ(f2 + α) + 1−θ
2 φ(f2 + β) + 1−θ

2 φ(f2 − β)
× 1

2 . (7.3)

In line with intuition, when the price has not changed at date 1, speculators who

receive the raw signal trade in the same way at dates 1 and 2 since their informational

advantage relative to dealers is identical at both dates. When u = 1, speculators who

receive the processed signal trade as in the baseline case. In contrast, when u = 0, they

act differently. Indeed, they trade even when u = 0 and p1 = p0 while they do not in

this situation in the baseline case. For instance, when s = 1 and u = 0, the process

information speculators expect the raw information speculators to buy the asset at date

2. These buys tend to push the price above processed information speculators’ estimate

of the payoff of the asset given that u = 0 (i.e., 1/2). Thus, when s = 1 and u = 0,

they sell the asset. Given the aggregate size of their trade, k, the order flow from all

speculators (those trading on the processed signal and those trading on the raw signal)

is β = α1 − kα2. The trade size of processed information speculators in equilibrium (k)

is such that β ≥ 0 so that their sells never more than offset raw information speculators’

buys when s = 1 and u = 0. Intuitively doing so cannot be optimal in equilibrium

because the expected price for the asset at date 2 would then be less than the estimate of

the asset by the processed information speculators. Intuitions are symmetric when when

s = 0 and u = 0
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From Propositions 7.1, we deduce the expected profit of the speculators (on their

trade at date t = 2) when the price has not changed at date t = 1.

Proposition 7.2. Speculators’ expected profits on their trade at date 2, conditional on

no change in the price at date t = 1, are as followed

1. Γ1 : α1 + α2 ≤ 1, and α2 ≥ α1

π1,nc
2 (α1, α2) = π2,nc

2 (α1, α2) = θ

2

(
1− 1

2− θ (α1 + α2)
)

(7.4)

2. Γ2 : α1 + α2 ≤ 1, and α2 < α1

π1,nc
2 (α1, α2) = θ

2

[
1− α1 −

θ

2− θα2

]
(7.5)

π2,nc
2 (α1, α2) = θ

2

1− (2θ − 1)α1 −
( 2

2− θ − (2θ − 1)
)

︸ ︷︷ ︸
≥0

α2

 (7.6)

3. Γ3 : 1 < α1 + α2 ≤ 2, and α2 ≥ α1

π1,nc
2 (α1, α2) = π2,nc

2 (α1, α2) = θ(1− θ)
2(2− θ) (2− α1 − α2) (7.7)

4. Γ4 : 1 < α1 + α2 ≤ 2, α2 < α1, and α1 < 1

π1,nc
2 (α1, α2) = θ(1− θ)

2− θ (1− α1) (7.8)

π2,nc
2 (α1, α2) = θ(1− θ)

2(2− θ) (2 + 2(1− θ)α1 − 2(2− θ)α2) (7.9)

5. Γ5 : α2 ≤ 1, and α1 ≥ 1

π1,nc
2 (α1, α2) = 0 (7.10)

π2,nc
2 (α1, α2) = θ(1− θ)(1− α2) (7.11)
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6. Γ6 : α1 + α2 > 2, and α2 > 1

π1,nc
2 (α1, α2) = π2,nc

2 (α1, α2) = 0 (7.12)

Figure 7.1 shows the case that obtains (denoted Γj for j ∈ {1, ..., 6}) for each possible

pair ((α1, α2)). Proposition 7.2 shows that in case Γ6, all speculators obtain zero expected

profits. This case cannot arise when the costs of producing the signals are strictly positive.

Thus we ignore it in the rest of the analysis. Similarly, in case Γ5, speculators trading on

the raw signal obtain a zero expected profit. Again this case cannot arise when the raw

signal is costly to produce. Thus, we ignore it as well.

When α2 ≥ α1 (cases Γ1 and Γ3), the expected profits of speculators on their trades

at date 2 are the same whether they buy the processed or the raw signal, when the price

has not changed at date 1 (i.e., π1,nc
2 (α1, α2) = π2,nc

2 (α1, α2)). The reason is that in this

case, β = 0. Thus, the aggregate demand from speculators trading on the raw signal is

perfectly offset by that of speculators trading on the processed signal when u = 0. Thus,

when u = 0, all speculators trade at price 1/2 and make zero expected profits. When

u = 1, they trade as the speculators who receive the processed signal and therefore obtain

the same expected profit.
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Figure 7.1: Cases in Proposition 7.2 for each pair (α1, α2).

7.2 Equilibrium in the market for information

Let π̄agg1 (α1, α2) = α1π̄1(α1, α2) denote the aggregate profits of speculators who buy the

raw signal and π̄agg2 (α1, α2) = α2π̄2(α1, α2) denote the aggregate profits of those who buy

the processed signal. An interior equilibrium in the market for information is a pair

(αe1(Cr, Cp), αe2(Cr, Cp) such that,

π̄agg1 (αe1(Cr, Cp), αe2(Cr, Cp)) = Cr, (7.13)

π̄agg2 (αe1(Cr, Cp), αe2(Cr, Cp)) = Cp, (7.14)

and,

∂π̄agg1
∂α1

(αe1(Cr, Cp), αe2(Cr, Cp)) < 0, ∂π̄
agg
2

∂α2
(αe1(Cr, Cp), αe2(Cr, Cp)) < 0. (7.15)

Condition (7.15) guarantees that we select as an equilibrium the pair (αe1(Cr, Cp), αe2(Cr, Cp)

with the largest demand for each signal when there are multiple solutions to the system
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of equation eq.(7.13) and eq.(7.14).

Demand externalities. As in the paper, we can assess how an exogenous increase in

the demand for the raw signal, α1, affects the demand for the processed signal α2, around

an equilibrium, by computing the “best response function”, α2(α1), implicitly given by

π̄agg2 (α1, α2) = Cp, around (αe1(Cr, Cp), αe2(Cr, Cp)). This function is (locally) increasing

if and only if
∂π̄2

∂α1
(αe1, αe2) < 0.

Using eq.(7.2) and the definition of π̄agg2 (α1, α2), we obtain:

∂π̄2

∂α1
= πc2(α2)− π2,nc

2 (α1, α2) + (1− α1)∂π
2,nc
2

∂α1
. (7.16)

We obtain a similar the same expression for ∂π̄2
∂α1

in the baseline model (see eq.(15)),

except for the last term ((1−α1)∂π
2,nc
2
∂α1

. As explained in the baseline model, the first term

(πc2(α2)− π2,nc
2 (α1, α2)) can be positive or negative, which implies that an increase in the

demand for the raw signal can increase or reduce the value of trading on the processed

signal. Eq.(7.16) shows that this key mechanism for our results still operates in the case

in which the speculators can trade on the raw signal at date 2.

In the baseline model, however, an increase in the demand for the raw signal affects

the expected profit of speculators receiving the processed signal only through its effect

on the likelihood α1 that the price at date 1 reveals the raw signal s. When speculators

receiving the raw signal can also trade at date 2, an increase in their mass also directly

affects the expected profit of trading on the processed signal when there is no change in

the price at date 1. Indeed, as shown in the previous section (Proposition 7.1), in this

case, speculators with the raw signal trade at date 2 and this affects the expected profit

of speculators who receive the processed signal. This effect is captured by the last term

in eq.(7.16) (∂π
2,nc
2
∂α1

).

The sign of this effect can be positive or negative. The reason is identical to the

reason for which πc2(α2)−π2,nc
2 (α1, α2) can be positive or negative. Indeed, when the raw
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information speculators’ signal is correct (u = 1), trading by these speculators increases

competition for the speculators trading on the processed signal and thereby reduces their

profits. In contrast, when their signal is incorrect (u = 0), trading by the raw speculators

at date 2 open new profit opportunities for the speculators trading on the processed signal

since they can trade against the noise introduced by raw signal speculators in the price

at date 2. This is exactly the same mechanism as that present in the baseline model,

which is already captured by the first term in eq.(7.16) ((πc2(α2)− π2,nc
2 (α1, α2)).

Thus, as in the baseline model, an increase in the demand for the raw signal can either

be (locally) (i) a positive externality for those buying the processed signal (it increases

their expected profit) or (ii) a negative externality. To see this, consider two cases. First,

consider the subcase of case Γ3, in Proposition 7.2, where α2 ≥ 1. In this case, πc2(α2) = 0

and therefore, using eq.(7.2) and eq.(7.7), we have:

π̄agg2 (α1, α2) = θ(1− θ)
2(2− θ)α2(1− α1) (2− α1 − α2) .

It follows that ∂π̄agg2 /∂α1 < 0 and thus ∂α2/∂α1 < 0. Alternatively, consider case Γ4.

We deduce from eq.(7.2) and (7.9) that in this case,

π̄agg2 (α1, α2) = α1θ(1− θ)α2(1− α2) + (1− α1)θ(1− θ)2(2− θ)α2 (2 + 2(1− θ)α1 − 2(2− θ)α2) .

The partial derivative with respect to α1 can be positive for some values of α2.

Another difference with the baseline case is that the demand for the processed signals

(α2) affects the expected profit of speculators who receive the raw signal. Indeed, when

they trade at date 2, their expected profit is affected by the demand of speculators who

receive the processed signal (see Proposition 7.2) and therefore their total expected profit

depends on this demand as well. In all cases, considered in Proposition 7.2, the expected

profit for speculators trading on the raw signal at date 2 decreases with the demand for

the processed signal. We deduce that:

∂π̄agg1
∂α2

< 0. (7.17)
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Solving for the equilibrium. Equations (7.13)and (7.15) show that when speculators

can trade on the raw signal at date 2, the demand for the raw signal and the demand

for the processed signal are simultaneously determined in equilibrium because (i) the

expected profit from trading on the processed signal depends on the demand for the raw

signal, α1 (as in the baseline model) and (ii) the expected profit from trading on the raw

signal depends on the demand for the processed signal, α2. In contrast, in the baseline

model, the expected profit from trading on the raw signal does not depend on the demand

for the processed signal. As a result, in the baseline model, one can solve for equilibrium

demands in closed-form by first solving for the demand for the raw signal and then the

demand for the processed signal at the equilibrium point obtained for the demand for

the raw signal. The simultaneous determination of the demands for both signals in the

extension considered here precludes the use of this approach and, for this reason, no

analytical solutions can be obtained for equilibrium demands. However one can solve

numerically for the system of equations (7.13) and (7.15) to find the equilibrium. Panel

A in Figure 7.2 provides an example. In this example, when Cr declines, the demand

for the raw signal (blue line) increases and the demand for the processed signal (red

line) increases. Thus, as in the baseline model, this is a case in which an increase in the

demand for the raw signal exerts a negative externality on the demand for the processed

signal.

7.3 Asset price informativeness.

Remember that as asset price informativeness at date t is defined as,

Et = 1
4 − E[(V − pt)2] = 1

4 − E[pt(1− pt)].

At date 1, the equilibrium is as in the baseline model and we therefore obtain the same

expression for E1 (eq.(53) in the baseline model). For date 2, we obtain the following

result. We obtain the following result.
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Proposition 7.3. Asset price informativeness at date 2 is:

E2(Cr, Cp) = θ

4 −
1
4
[
(1− αe1)

(
π1,nc

2 (αe1, αe2) + π2,nc
2 (αe1, αe2)

)
+ αe1π

c
2(αe2)

]
, (7.18)

where αe1 and αe2 solve (7.13)and (7.15) and expressions for expected profits are given in

Proposition 7.2.

We just consider the cases in which (α1, α2) ∈ Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 because other cases

cannot arise in an interior equilibrium in which the demand for both signals is strictly

positive.

Solving numerically for αe1 and αe2, we can analyze the effect of a change in the cost of

the raw signal on price informativeness at date 2. Panels B and D of Figure 7.2 show that

the key finding of the baseline model still obtains in this extension. Indeed, a decrease

in the cost of the raw signal can trigger a decrease in price informativeness at date 2

because it generates a drop in the value of the processed signal and therefore the demand

for this signal (Panels A and C of Figure 7.2). In contrast to the baseline model, we

cannot delineate in a clear way for which values of the parameters this happens because

we cannot solve analytically for equilibrium demands.

7.4 Price and trade patterns

We only consider cases in which in equilibrium, the demand for both signals is strictly

positive (αe1(Cr, Cp) > 0 and αe2(Cr, Cp) > 0). Indeed, in other cases, the covariances

derived below are all zero, as in the baseline model, since x1 = 0 or x2 = 0.

Corollary 7.1. If αe1(Cr, Cp) > 0 and αe2(Cr, Cp) > 0, then the covariance between a raw

signal speculator’s trade, x1 (at date 1 or 2), and a processed signal speculator’s trade,

x2, is

Cov(x1, x2) = θ − (1− θ)αe1 − (1− θ)(1− αe1) min
[
1, α

e
1
αe2

]
. (7.19)

The first two terms in Cov(x1, x2) (θ− (1− θ)αe1) are identical to that in the baseline

model (see Corollary 4 in the baseline model). As explained in the paper, the second
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Figure 7.2: Panels A and C depicts demands for information, αe1(Cr, Cp)
and αe2(Cr, Cp), and Panels B and D depicts long run price informativeness,
E2(Cr, Cp), as functions of Cr, respectively for Cp = 0.0006 and Cp = 0.017, and
for θ = 0.75.

term captures the fact that when raw speculators’ signal is noise, processed information

speculators trade in a direction opposite to raw information speculators, which tends

to create a negative correlation between the trades of raw and processed information

speculators. In the baseline model, processed information speculators trade in a direction

opposite to that of raw information speculators only the raw signal is noise (u = 0) and

the price has changed at date 1. In contrast, in the extension considered here, they

also do so when the price has not changed at date 1, which reinforces the tendency

for the correlation between the trades of raw and processed information speculators to

be negatively correlated. This effect is captured by the last term in the expression for

Cov(x1, x2). Its presence does not change our main conclusions for Cov(x1, x2) in the

baseline model. That is, Cov(x1, x2) can be positive or negative and is more likely to be

37



negative when Cr and θ are small, as shown in Figure 7.3.
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Figure 7.3: Panel A depicts the covariance between speculators’ trades, as
functions of θ, for Cr = 0.035, Cr = 0.04 and Cr = 0.045, and for Cp = 0.0006.
Panel B depicts the covariance between speculators’ trades, as functions of θ,
for Cp = 0.017. In the last case, αe2 < αe1, and thus Cov(x1, x2) = 2θ − 1 and does
not depend on Cr.

Corollary 7.2. The covariance between date 1 return, r1 (at date 1 or 2), and a processed

signal speculator’s trade, x2, is

Cov(r1, x2) = θ(2θ − 1)αe1. (7.20)

We obtain exactly the same expression for Cov(r1, x2) in the baseline model (see

Corollary 5). Thus, the results obtained in this case still apply. In a particular, (i)

Cov(r1, x2) can be positive or negative and (ii) a decrease in the cost of the raw signal

raises the demand for this signal (αe1 and therefore increases Cov(r1, x2) in absolute value.

Corollary 7.3. If the covariance between a raw signal speculator’s trade, x1, and date 2

return, r2 = p2 − p1, is

Cov(x1, r2) = 1
2(1− αe1)

(
θ − 2π1,nc

2 (αe1, αe2)
)
. (7.21)

Thus, as in the baseline model, Cov(x1, r2) is always positive because π1,nc
2 (αe1, αe2) < θ

2 .

Figure 7.4 shows that Cov(x1, r2) can increase with Cr. But again, in contrast with the
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baseline model, we cannot clearly determine under which parameters’ values this result

would or would not hold.
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Figure 7.4: Panel A and B depict the covariance between raw signal specula-
tors’ trades and date 2 return, as functions of Cr, respectively for Cp = 0.0006
and Cp = 0.017.

Proofs

Proof of Propositions 7.1 and 7.2. We first show that speculators’ trading strategies

and the equilibrium price given in Proposition 7.1 form an equilibrium. Given these

trading strategies, the aggregate order flow at date 2 when there is no change in price at

date 1 is

f̃2 = l̃ +



α if s = 1, u = 1,

β if s = 1, u = 0,

−α if s = 0, u = 1,

−β if s = 0, u = 0,

(7.22)

where α = α1 + α2 and β = α1 − kα2. Observe that α and β are the components of the

order flow that comes from speculators when u = 1 and u = 0, respectively. equilibrium.

It follows from eq.(7.22) that:

Pr[f̃ = f ] = θ

2φ(f − α) + θ

2φ(f + α) + 1− θ
2 φ(f + β) + 1− θ

2 φ(f − β),

P r[f̃ = f |V = 1] = θφ(f − α) + 1− θ
2 φ(f + β) + 1− θ

2 φ(f − β),
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Pr[f̃ = f |V = 0] = θφ(f + α) + 1− θ
2 φ(f + β) + 1− θ

2 φ(f − β).

This yields the expression for the equilibrium price at date 2 when the price has not

changed at date 1 since:

p∗2(f2) = Pr[V = 1|f̃2 = f2] = Pr[f̃2 = f2|V = 1]
2Pr[f̃2 = f2]

=
θφ(f2 − α) + 1−θ

2 φ(f2 + β) + 1−θ
2 φ(f2 − β)

θ
2φ(f2 − α) + θ

2φ(f2 + α) + 1−θ
2 φ(f2 + β) + 1−θ

2 φ(f2 − β)
× 1

2

We now show that the trading strategies of each type of speculator given in Parts 1

and 2 of Proposition 7.1 form an equilibrium. We consider 4 different cases.

Case 1: Γ1 and Γ2: α = α1+α2 ≤ 1. In this case, the last column of the next table gives

the possible realizations of the equilibrium price at date 2 for each realization of the order

flow at date 2, f̃2. The equilibrium price is identical for all realizations of the order flow

that belongs to the interval I indicated in the first column. The probability distribution

of possible realizations for the equilibrium price is given in the second column. The third

column gives this distribution conditional on V = 1 and is useful for some calculations.

f2 ∈ I Pr[f̃2 ∈ I] Pr[f̃2 ∈ |V = 1] p2

[−1− α,−1− β) θ
2
α−β

2 0 0

[−1− β,−1 + β) 1
2β

1−θ
2 β 1−θ

2

[−1 + β,−1 + α) 2−θ
2

α−β
2 (1− θ)α−β2

1−θ
2−θ

[−1 + α, 1− α) 1− α 1− α 1
2

[1− α, 1− β) 2−θ
2

α−β
2

α−β
2

1
2−θ

[1− |β|, 1 + β) 1
2β

1+θ
2 β 1+θ

2

[1 + β, 1 + α)] θ
2
α−β

2 θα−β2 1

To derive speculators’ optimal trading strategy, it is also useful to compute the probability

distributions of the equilibrium price at date 2 conditional on (i) s = 1 and u = 1 and
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(ii) s = 1 and u = 0. We obtain:

f2 ∈ I Pr[f̃2 ∈ I|s = 1, u = 1] Pr[f̃2 ∈ I|s = 1, u = 0] p2

[−1− α,−1− β) 0 0 0

[−1− β,−1 + β) 0 0 1−θ
2

[−1 + β,−1 + α) 0 α−β
2

1−θ
2−θ

[−1 + α, 1− α) 1− α 1− α 1
2

[1− α, 1− β) α−β
2

α−β
2

1
2−θ

[1− β, 1 + β) β β 1+θ
2

[1 + β, 1 + α)] α−β
2 0 1

We deduce that as β ≥ 0,

E[p̃2|s = 1, u = 1] = α− β
2 × 1 + β × 1 + θ

2 + α− β
2 × 1

2− θ + (1− α)× 1
2 ,

= 1
2 + 1

2(2− θ)α +
(
θ

2 −
1

2(2− θ)

)
β.

(7.23)

E[p̃2|s = 1, u = 0] = β × 1 + θ

2 + α− β
2 × 1

2− θ + (1− α)× 1
2 + α− β

2 × 1− θ
2− θ ,

= 1
2 + θ

2β.

(7.24)

Thus, E[p̃2|s = 1, u = 0] ≥ 1
2 with a strict inequality if β > 0. Suppose first that α1 > α2.

In this case, k = 1 and β > 0. It is therefore strictly optimal for speculators receiving

the processed signal to sell the asset when they receive the signal s = 1 and u = 0. Thus,

all speculators with the processed signal sell the asset when s = 1 and u = 0. If α1 < α2

then k = α1
α2

and β = 0. Each speculator with the processed signal is therefore indifferent

between selling the asset or doing nothing in the state s = 1 and u = 0. Thus, selling

k shares (or equivalently selling one share with probability k) is a best response when

α1 < α2 (k < 1) and s = 1 and u = 0.

41



Moreover, using eq.(7.23) and (7.24), we deduce that:

E[p̃2|s = 1] = 1 + βθ

2 + θ(α− β)
2(2− θ) .

Thus, as k ≤ 1 and α1 + α2 ≤ 1, we deduce that:

E[p̃2|s = 1] < E[V |s = 1] = 1 + θ

2 .

It follows that a speculator who receives the raw signal optimally buys the asset when

s = 1 since he expects to trade at a price less than his estimate of the value of the asset.

The analysis is symmetric when s = 0 and is skipped for brevity. This proves that

when α = α1 + α2 ≤ 1, speculators’ strategies in Proposition 7.1 form an equilibrium.

Profits. Given his equilibrium trading strategy, the expected profit of a processed signal

speculator when there is no change in the price at date 1 is:

π2,nc
2 (α1, α2) = θE[(V − p2)|s = 1, u = 1] + (1− θ)E[(p2 − V )|s = 1, u = 0]k

= θ

(
1
2 −

1
2(2− θ)α−

(
θ

2 −
1

2(2− θ)

)
β

)
+ (1− θ)θ2kβ

= θ

(
1
2 −

1
2(2− θ)(α1 + α2)−

(
θ

2 −
1

2(2− θ)

)
max [0, α1 − α2]

)

+ (1− θ)θ2 max [0, α1 − α2] min
[
α1

α2
, 1
]

Given his equilibrium trading strategy, the expected profit of speculator trading on the

raw signal is:

π1,nc
2 (α1, α2) = θE[(V − p2)|s = 1, u = 1] + (1− θ)E[(V − p2)|s = 1, u = 0]

= θ

(
1
2 −

1
2(2− θ)α−

(
θ

2 −
1

2(2− θ)

)
β

)
− (1− θ)θ2β

= θ

(
1
2 −

1
2(2− θ)(α1 + α2)−

(
θ

2 −
1

2(2− θ)

)
max [0, α1 − α2]

)

− (1− θ)θ2 max [0, α1 − α2]
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If α2 > α1, then

π1,nc
2 (α1, α2) = π2,nc

2 (α1, α2) = θ

2

(
1− 1

2− θ (α1 + α2)
)

If α2 < α1, then

π1,nc
2 (α1, α2) = θ

2

[
1− α1 −

θ

2− θα2

]
(> 0)

π2,nc
2 (α1, α2) = θ

2

1− (2θ − 1)α1 −
( 2

2− θ − (2θ − 1)
)

︸ ︷︷ ︸
≥0

α2


This proves Proposition 7.2 in cases Γ1 and Γ2.

Other cases. The analysis of other cases follow similar steps. We use the following

shorthands for some notations:

1. P1 for Pr[f̃ ∈ I]

2. P2 for Pr[f̃ ∈ I|V = 1]

3. P3 for Pr[f̃ ∈ I|s = 1, u = 1]

4. P4 for Pr[f̃ ∈ I|s = 1, u = 0] if β ≥ 0

Case 2: Γ3 and Γ4: Assume 1 ≤ α ≤ 2 and (i) α2 ≥ α1 or (ii) α2 < α1 and α1 < 1.

As in the previous case, the next table gives the probability distribution of the equilibrium

price by considering various intervals (I) for the realization of the order flow at date 2,

f̃2. It also provides the distribution of the equilibrium price at date 2 conditional on

various events in Columns 2 to 5. For instance, if f2 ∈ [−1− α,−1− β), the equilibrium

price at date 2 is zero. This happens with probability θ
2
α−|β|

2 unconditionally and with
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probability zero conditional on V = 1 (P2), or s = u = 1 (P3) or s = 1 and u = 0 (P4).

f2 ∈ I P1 P2 P3 P4 p̃2

[−1− α,−1− β) θ
2
α−β

2 0 0 0 0

[−1− β,−1 + β) 1
2β

1−θ
2 β 0 0 1−θ

2

[−1 + β, 1− α) 2−θ
2

2−(α+β)
2 (1− θ)2−(α+β)

2 0 2−(α+β)
2

1−θ
2−θ

[1− α,−1 + α) (1− θ)(α− 1) (1− θ)(α− 1) 0 α− 1 1
2

[−1 + α, 1− β) 2−θ
2

2−(α+β)
2

2−(α+β)
2

2−(α+β)
2

2−(α+β)
2

1
2−θ

[1− β, 1 + β) 1
2β

1+θ
2 β β β 1+θ

2

[1 + β, 1 + α] θ
2
α−β

2 θα−β2
α−β

2 0 1

As β ≥ 0,

E[p̃2|s = 1, u = 1] = α− β
2 × 1 + β × 1 + θ

2 + 2− (α + β)
2 × 1

2− θ

= 1
2− θ + 1− θ

2(2− θ)α−
(1− θ)2

2(2− θ)β

E[p̃2|s = 1, u = 0] = β × 1 + θ

2 + 2− (α + β)
2 × 1

2− θ + (α− 1)× 1
2 + 2− (α + β)

2 × 1− θ
2− θ

= 1
2 + θ

2β

Then, proceeding exactly as in Case 1, one can show that speculators’ strategies in

Proposition 7.1 form an equilibrium in the case Γ3 and Γ4.

Speculators’ expected profits. Given his equilibrium trading strategy, the ex-

pected profit of a processed information speculator is:

π2,nc
2 (α1, α2) = θE[(V − p2)|s = 1, u = 1] + (1− θ)E[(p2 − V )|s = 1, u = 0]k

= θ

(
1− θ
2− θ −

1− θ
2(2− θ)α + (1− θ)2

2(2− θ)β
)

+ (1− θ)θ2kβ

= θ

(
1− θ
2− θ −

1− θ
2(2− θ)α + (1− θ)2

2(2− θ) max [0, α1 − α2]
)

+ (1− θ)θ2 max [0, α1 − α2] min
[
α1

α2
, 1
]
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Given his equilibrium trading strategy, the expected profit of a raw information speculator

is:

π1,nc
2 (α1, α2) = θE[(V − p2)|s = 1, u = 1] + (1− θ)E[(V − p2)|s = 1, u = 0]

= θ

(
1− θ
2− θ −

1− θ
2(2− θ)α + (1− θ)2

2(2− θ)β
)
− (1− θ)θ2β

= θ

(
1− θ
2− θ −

1− θ
2(2− θ)α + (1− θ)2

2(2− θ) max [0, α1 − α2]
)
− (1− θ)θ2 max [0, α1 − α2]

When α2 ≥ α1, β = 0, which implies that α = α1 + α2 ≤ 2. In this case, we deduce

from the previous expressions for the expected profits that:

π1,nc
2 (α1, α2) = π2,nc

2 (α1, α2) = θ(1− θ)
2(2− θ) (2− α1 − α2)

When α2 < α1, β = α2−α1, which implies that α+ β ≤ 2 and therefeore α1 ≤ 1. In this

case, we deduce from the previous expressions for the expected profits that:

π1,nc
2 (α1, α2) = θ(1− θ)

2− θ (1− α1) , (≥ 0)

π2,nc
2 (α1, α2) = θ(1− θ)

2(2− θ) (2 + 2(1− θ)α1 − 2(2− θ)α2)

This proves Proposition 7.2 in cases Γ3 and Γ4.

Case 3: Γ5: α2 ≤ 1 and α1 ≥ 1. We distinguish two subcases in this case.

Case 3.1. In the first subcase, we have α2 ≥ α1 − 1. The probability distribution of

the order flow at date 2, f̃2, and the equilibrium price p2 for each possible realization of

45



f̃2 are then as follows.

I P1 P2 P3 P4 p̃2

[−1− α,−1− β) θ
2
α−β

2 0 0 0 0

[−1− β, 1− α) 1
2

2−(α−β)
2

1−θ
2

2−(α−β)
2 0 0 1−θ

2

[1− α,−1 + β) 1−θ
2

α+β−2
2

1−θ
2

α+β−2
2 0 0 1

2

[−1 + β, 1− β) (1− θ)(1− β) (1− θ)(1− β) 0 1− β 1
2

[1− β,−1 + α) 1−θ
2

α+β−2
2

1−θ
2

α+β−2
2 0 α+β−2

2
1
2

[−1 + α, 1 + β) 1
2

2−(α−β)
2

1+θ
2

2−(α−β)
2

2−(α−β)
2

2−(α−β)
2

1+θ
2

[1 + β, 1 + α] θ
2
α−β

2 θα−β2
α−β

2 0 1

We deduce that:

E[p̃2|s = 1, u = 1] = α− β
2 × 1 + 2− (α− β)

2 × 1 + θ

2
= 1 + θ

2 + 1− θ
4 α− 1− θ

4 β

E[p̃2|s = 1, u = 0] = 2− (α− β)
2 × 1 + θ

2 + α + β − 2
2 × 1

2 + (1− β)× 1
2

= 1 + θ

2 − θ

4(α− β)

Then, proceeding exactly as in Case 1, one can show that speculators’ strategies in

Proposition 7.1 form an equilibrium in the case Γ5 when α2 ≥ α1 − 1.

Speculators’ expected profits. As α2 ≥ α1 − 1, given his equilibrium trading

strategy, the expected profit of a processed information speculator is then:
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π2,nc
2 (α1, α2) = θ

(
1− θ

2 − 1− θ
4 α + 1− θ

4 (α1 − α2)
)

+ (1− θ)
(
θ

2 −
θ

4α + θ

4(α1 − α2)
)

= θ(1− θ)(1− α2)

The expected profit of a raw information speculator is

π1,nc
2 (α1, α2) = θ

(
1− θ

2 − 1− θ
4 α + 1− θ

4 (α1 − α2)
)

− (1− θ)
(
θ

2 −
θ

4α + θ

4(α1 − α2)
)

= 0

This proves Proposition 7.2 in in the case Γ5 when α2 ≥ α1 − 1.

Case 3.2. In the second subcase, we have α2 < α1 − 1. The probability distribution

of the order flow at date 2, f̃2, and the equilibrium price p2 for each possible realization

of f̃2 are then as follows.

I P1 P2 P3 P4 p̃2

[−1− α,−1− β) θ
2
α−β

2 0 0 0 0

[−1− β, 1− α) 1
2

2−(α−β)
2

1−θ
2

2−(α−β)
2 0 0 1−θ

2

[1− α, 1− β) 1−θ
2

α−β
2

1−θ
2

2−(α−β)
2 0 0 1

2

[1− β,−1 + β) 0 0 0 0 1
2

[−1 + β,−1 + α) 1−θ
2

α−β
2

1−θ
2

α−β
2 0 α−β

2
1
2

[−1 + α, 1 + β) 1
2

2−(α−β)
2

1+θ
2

2−(α−β)
2

2−(α−β)
2

2−(α−β)
2

1+θ
2

[1 + β, 1 + α] θ
2
α−β

2 θα−β2
α−β

2 0 1
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We deduce that:

E[p̃2|s = 1, u = 1] = α− β
2 × 1 + 2− (α− β)

2 × 1 + θ

2
= 1 + θ

2 + 1− θ
4 α− 1− θ

4 β

E[p̃2|s = 1, u = 0] = 2− (α− β)
2 × 1 + θ

2 + α− β
2 × 1

2
= 1 + θ

2 − θ

4(α− β).

These are exactly the same expressions as in case 3.1 and so the rest of the proof is

identical. We skip it brevity.

As explained in the text, this case cannot arise when the market for information is in

equilibrium since some speculators make zero expected profits. Thus, for brevity, we do

not compte price informativeness in this case.

Case 4: Γ6: α = α1 + α2 ≥ 2 and α2 ≥ 1. Remember that β is the order flow from

all speculators in equilibrium. When α2 ≥ 1 β = 0. In this case, the market maker can

perfectly infer the realization of (s, u) from the order flow at date 2. Indeed, when u = 0,

the support of the order flow is [−1− β, 1− β]∪ [−1 + β, 1 + β], i.e., [−1, 1]. In contrast,

when u = s = 1, this support is [−1 +α, 1 +α] while when u = s = 0 the support for the

order flow is [−1− α, 1− α]. These three supports never overlap when α ≥ 2. Thus, the

order flow is fully revealing in this case and speculators make zero expected profits.2

Proof of Proposition 7.3. First, the pricing error date 2 conditional on p1 = 1/2 can

be rewritten as

E[(V − p2)2|p1 = 1/2] = E[V (V − p2)|p1 = 1/2] + E E[p2(V − p2)|p2, p1 = 1/2]︸ ︷︷ ︸
=0

|p1 = 1/2]

= 1
2E[(2V − 1)(V − p2)|p1 = 1/2] + 1

2E [V − p2|p1 = 1/2]︸ ︷︷ ︸
=0

2In this case, speculators are indifferent between trading or not and therefore there are other equi-
libria. However, all equilibria are such that speculators make zero expected profits. As they never arise
when information production is costly, we ignore them. In all other cases, the equilibrium is unique.
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Now consider the trading strategy of speculators at date 2 conditional on p1 = 1/2:

x1 = 2s− 1 = u(2V − 1) + (1− u)(2ε− 1) = 2V − 1 + 2(1− u)(ε− V )

x2 = u(2V − 1)− k(1− u)(2ε− 1) = 2V − 1 + 2(1− u)(−kε− V )

Then one can write,

π1,nc
2 (α1, α2) + π2,nc

2 (α1, α2)

=E[(x1 + x2)(V − p2)|p1 = 1/2]

=2E[(2V − 1)(V − p2)|p1 = 1/2] + 2E[(1− u)((1− k)ε− 2V )(V − p2)|p1 = 1/2]

=2E[(2V − 1)(V − p2)|p1 = 1/2] + 2(1− θ)E[(1− k)ε(V − p2)|p1 = 1/2, u = 0]

− 4(1− θ)E[V (V − p2)|p1 = 1/2, u = 0]

Conditional on u = 0, V and p2 are independent. Therefore

E[V (V − p2)|p1 = 1/2, u = 0] = E[V 2|p1 = 1/2, u = 0]− E[V |p1 = 1/2, u = 0]E[p2|p1 = 1/2, u = 0]

= 1
2 −

1
2 ×

1
2 = 1

4

In equilibrium, we have k = min[α1/α2, 1. When k = 1, obviously we have,

E[(1− k)ε(V − p2)|p1 = 1/2, u = 0] = 0

When k = α1/α2, we also have β = 0. Then, in this case, conditional on u = 0, the

aggregate is the liquidity trade order flow is f2 = l2, and then p2 is independent of ε.

Therefore

E[(1− k)ε(V − p2)|p1 = 1/2, u = 0]

=(1− k)E[ε|p1 = 1/2, u = 0] (E[V |p1 = 1/2, u = 0]− E[p2|p1 = 1/2, u = 0])

=(1− k)1
2

(1
2 −

1
2

)
= 0
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Overall, we obtain,

π1,nc
2 (α1, α2) + π2,nc

2 (α1, α2) = 4E[(V − p2)2|p1 = 1/2]− (1− θ)

and thus

E[(V − p2)2|p1 = 1/2] = 1− θ
4 + 1

4
(
π1,nc

2 (α1, α2) + π2,nc
2 (α1, α2)

)

When the equilibrium price at date 1 reveals the raw signal s, the equilibrium at date

2 is as in the baseline model (since speculators who receive the raw signal do not trade

in this case). Hence, using the results of the baseline model, we obtain that:

E[(V − p2)|p1 6= 1/2] = (1− α2)(1 + θ)(1− θ)
4 + α2

1− θ
4 = 1− θ

4 + 1
4π

c
2(α2)∗

Consequently,

E[(V − p2)2] = 1− θ
4 + α1

4 π
c
2(α2) + 1− α1

4
(
π1,nc

2 (α1, α2) + π2,nc
2 (α1, α2)

)

And the results for informativeness follows.

Proof of Corollary 7.1. As in the baseline version of the paper (see proof of Corollary

4 in the paper), we have:

Cov(x1, x2) = E[x1x2] = 1
2 E[x2|s = 1]− 1

2 E[x2|s = 0].

Thus, denoting the event {s = 1, u = 0} by I1 and the event {s = 0, u = 0} by I0, we

obtain:

Cov(x1, x2) = θ

2 E [x2|V = 1, u = 1] + (1− θ)
2 (αe1 E

[
x2|I1, p1 = 1 + θ

2

]
+ (1− αe1) E

[
x2|I1, p1 = 1

2

]
)

− θ

2 E [x2|V = 0, u = 1]− (1− θ)
2 (αe1 E

[
x2|I0, p1 = 1− θ

2

]
+ (1− αe1) E

[
x2|I0, p1 = 1

2

]

= θ − (1− θ)[αe1 + (1− αe1)k]
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where k = min{1, α
e
1
αe2
}.

Proof of Corollary 7.2. As E(x2) = 0, we have:

Cov(r1x2) = E(r1x2) = αe1E(r1x2 | r1 6= 0).

When r1 6= 0, the equilibrium at date 2 is as in the baseline model. Thus, E(r1x2 | r1 6= 0),

and therefore Cov(r1x2) has the same expression as in the baseline model.

Proof of Corollary 7.3.

We first compute the expression for Cov(x1, r2) given in eq.(27). As E[x1] = 0,

Cov(x1, r2) = E[(p∗2 − p∗1)x1]− E[p∗2 − p∗1]E[x1] = E[(p∗2 − p∗1)x1].

Now:

E[p∗1x1] = 1
2(E[p∗1x1|s = 1] + E[p∗1x1|s = 0]) = 1

2(E[p∗1|s = 1]− E[p1|s = 0])

= 1
2

(
(1− αe1)1

2 + αe1
1 + θ

2

)
− 1

2

(
(1− αe1)1

2 + αe1
1− θ

2

)

= θαe1
2 .

Similarly , we have that:

E[p∗2x1] = 1
2(E[p∗2|s = 1]− E[p∗2|s = 0]).

We first compute E[p∗2|s = 1]. We have:

E[p∗2|s = 1] = αe1E

[
p2

∣∣∣∣∣s = 1, p∗1 = 1 + θ

2

]
+ (1− αe1)E

[
p∗2

∣∣∣∣s = 1, p∗1 = 1
2

]
.

The event p1 = 1+θ
2 implies that s = 1. Thus,

E

[
p∗2

∣∣∣∣∣s = 1, p∗1 = 1 + θ

2

]
= E

[
p2

∣∣∣∣∣p∗1 = 1 + θ

2

]
= p∗1 = 1 + θ

2 .
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Similarly,

E[p∗2|s = 0] = αe1E

[
p2

∣∣∣∣∣s = 0, p∗1 = 1− θ
2

]
+ (1− αe1)E

[
p∗2

∣∣∣∣s = 0, p∗1 = 1
2

]
.

The event p1 = 1−θ
2 implies that s = 0. Thus,

E

[
p∗2

∣∣∣∣∣s = 0, p∗1 = 1− θ
2

]
= E

[
p2

∣∣∣∣∣p∗1 = 1− θ
2

]
= p∗1 = 1− θ

2 ,

Hence,

E[(p∗2 − p∗1)x1] = 1
2(1− αe1)

(
E
[
p∗2

∣∣∣∣s = 1, p∗1 = 1
2

]
− E

[
p∗2

∣∣∣∣s = 0, p∗1 = 1
2

])
= 1

2(1− αe1)
(

2E
[
p∗2

∣∣∣∣s = 1, p∗1 = 1
2

]
− 1

)
= 1

2(1− αe1)
(

2E
[
V
∣∣∣∣s = 1, p∗1 = 1

2

]
+ 2E

[
p∗2 − V

∣∣∣∣s = 1, p∗1 = 1
2

]
− 1

)
= 1

2(1− αe1)
(
θ − 2π1,nc

2 (αe1, αe2)
)
.

8 Optimal timing of their trades by raw information

speculators

In the baseline model, we assume (i) that speculators who receive the raw signal trade

at date 1 and (ii) that they have a maximum trading capacity of one share at this

date. In this section, we relax the first assumption while maintaining the assumption

that speculators’s total trade size cannot exceed more than one share. We assume that

speculators buy either the raw or the processed signal. This is without loss of generality

since speculators make zero expected profit net of the fees paid for these signals. Thus,

they are indifferent between buying none, one, or two signals. As a result, one can assume

that the population of speculators buying the raw signal is distinct from that buying the

processed signal without affecting the results.

Consider a speculator i receiving the raw signal first. Let x1i(s) be his signed order

at date 1 and let x2i(s, p1) be his optimal signed order at date 2, when he receives the
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raw signal s and the price realized at the end of date 1 is p1. Speculator i’s trade at date

2, can depend on the realization of the price at date 1 since this price is observed by all

market participants between dates 1 and 2. As the speculator’s trade size cannot exceed

one share overall, we have:

|x1i(s)|+ |x2i(s, p1)| ≤ 1. (8.1)

At date 1, the aggregate demand from speculators receiving the raw signal is:

q1 =
∫ α1

0
x1i(s)di.

For given trading strategies of speculators receiving the raw signal, the equilibrium at

date 1 is identical to that described in the model, except that q1 plays the role of α1
3.

Thus, with probability q1, the price at date 1 fully reflects the raw signal (p1 = E(v | s))

and with probability (1 − q1), the price at date 1 does not change. In the first case, it

cannot be optimal for a speculator receiving the raw signal to trade at date 2 since his

estimate of the payoff of the asset after the first trading round is identical to that of

dealers at date 2. Thus, in any equilibrium:

x∗2(s, p1) = 0 if p1 6= 1/2.

We now show that it is optimal for a raw speculator to trade only at date 1, i.e.,

x∗2(s, 1/2) = 0 as well. The next lemma is useful to establish this result. In this lemma,

we denote by pnc2 , the equilibrium price at date 2 conditional on no change in the price

at date 1 (i.e., if p1 = 1/2).

Lemma 1. In any equilibria at date 2 (i.e., whether or not some speculators trading on

the raw signal choose to trade at date 2), we have:

E[pnc2 |s = 1] > 1/2 > E[pnc2 |s = 0].

This result is intuitive. It says that, in equilibrium, traders who observe the raw
3When x1i(s) = 1 for all i then q1 = α1, which is the case considered in the baseline model.
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signal at date 1 must expect the price at date 2 to be on average strictly greater (resp.,

smaller) than the price at date 1 if (1) they have received a positive (resp., negative)

signal, s = 1, (resp., s = 0) and (2) the price at date 1 has not changed. The reason is

that, conditional on no change in the price at date 1, the optimal trading strategy of the

speculators receiving the processed signal is such that they trade in the same direction as

the traders receiving the raw signal. Thus, the latter expects the former to submit buy

(sell) orders when they submit buy (sell) orders and therefore the price at date 2 to be

on average higher than at date 1 when s = 1.

Intuitively, this means that the expected return on the trade at date 2 is strictly

smaller than the expected return on the trade at date 1 for a speculator who receives

the raw signal. Thus, he should optimally allocate all his trading capacity to date 1. To

establish this point formally, consider the expected profit of a speculator who receives

the raw signal, s. This expected profit is:

(1− q1)[x1(s)× (E(v | s)− 1
2) + x2(s, 1/2)× (E(v | s)− E[pnc2 |s = 1])],

since if p1 6= 1/2, the speculator optimally does not trade. Lemma 1 implies that

(E(v | s)− E[pnc2 |s = 1])] < (E(v | s)− 1
2).

. It follows that under the constraint (8.1), a speculator who receives the raw signal

maximizes his expected profit with x∗2(s, 1/2) = 0 and x∗1(s) = 1.4 Thus, under constraint

(8.1), there cannot be an equilibrium in which x∗2(s, 1/2) 6= 0. Thus, in equilibrium

x∗2(s, 1/2) = 0.

Now consider a trader who receives the processed signal. At date 1, this trader has

no information. hence, he cannot profitably trade with the market maker. Thus, trading

only at date 2 is a dominant strategy for speculator who buys the processed signal.

Proofs.
4As there is a continuum of speculators, the order of each speculator trading on the raw signal is too

small to affect prices at date 1 or 2. Thus, in choosing his optimal trading strategy, the speculator takes
prices as given (as in the baseline model).
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Proof of Lemma 1. Let q2(s)∗ =
∫ α1

0 x∗2i(s, 1/2)di be the demand of speculators

receiving the raw signal at date 2 in a given equilibrium. Proceeding as in the proof of

Proposition 7.1, it is possible to show that if x∗2i(s, 1/2) 6= 0 then it is strictly positive

when s = 1 and strictly negative when s = 0 (raw information speculators buy when they

receive good news and sell when they receive bad news. Thus, q∗2(1) ≥ 0 and q∗2(0) ≤ 0

(with equalities if no speculator receiving the raw signal trade at date 2). Then, we can

proceed exactly as in the proof of Proposition 7.1 in Section 7 to derive the equilibrium

trading strategy of the processed information speculators with q2 playing the role of α1.

The lemma then follows from the fact in all cases considered in this proof, the expected

price of the asset at date 2 is strictly larger than 1/2 when s = 1 and strictly smaller

than 1/2 when s = 0 (see, for instance, eq.(7.23) and eq.(7.24) in case 1 of the proof of

Proposition 7.1).
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