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A.1 Derivation of the cross-sectional implications

In this section we outline the derivation of the cross-sectional implications of the GDA model

and derive the sign restrictions on the risk prices.

A.1.1 Substituting out consumption

The logarithm of Mt−1,t (denoted as mt−1,t) and the disappointing event Dt are

mt−1,t = ln δ − γ∆ct −
(
γ − 1

ψ

)
∆zV t and Dt = {∆ct + ∆zV t < lnκ} , (A.1)

where

∆ct ≡ ln

(
Ct
Ct−1

)
= lnCt − lnCt−1 and ∆zV t ≡ ln

(
Vt
Ct

)
− ln

(
Rt−1 (Vt)

Ct−1

)
(A.2)

represent the change in the log consumption level (or consumption growth) and the change

in the log welfare valuation ratio (or welfare valuation ratio growth), respectively.

Following Epstein and Zin (1989), Hansen et al. (2007) and Routledge and Zin (2010)

the log return on wealth is related to consumption growth and the welfare valuation ratio

growth through

rWt = − ln δ + ∆ct +

(
1− 1

ψ

)
∆zV t. (A.3)

Substituting out consumption growth using the above relationship, the equations in (A.1)

can be rewritten as

mt−1,t = (1− γ) ln δ − γrWt −
(
γ − 1

ψ

)
∆zV t and Dt = {rWt + (1/ψ) ∆zV t < ln (κ/δ)} .

(A.4)

Note that the market return rWt is not directly observed by the econometrician. The return

to a stock market index is sometimes used to proxy for this return as in Epstein and Zin
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(1991). The welfare valuation ratios,

zV t ≡ ln (Vt/Ct) and zRt ≡ ln (Rt (Vt+1) /Ct) , (A.5)

are also unobservable. Following Hansen et al. (2008) and Bonomo et al. (2011), we can

exploit the dynamics of aggregate consumption growth and the utility recursion, in addition

to the definition of the certainty equivalent to solve for the unobserved welfare valuation

ratios.

From equation (A.3) it follows that stochastic volatility of aggregate consumption growth

is a sufficient condition for stochastic volatility of the market return. In that case, market

volatility measures time-varying macroeconomic uncertainty. In all what follows, this addi-

tional assumption is coupled with our assumption on investors’ preferences. More specifically,

assume for example that the logarithm of consumption follows a heteroscedastic random walk

as in Bonomo et al. (2011) were the stochastic volatility of consumption growth is an AR(1)

process that can be well-approximated in population by a two-state Markov chain. Then it

can be shown that the welfare valuation ratios satisfy

zV t = ϕV 0 + ϕV σσ
2
Wt and zRt = ϕR0 + ϕRσσ

2
Wt (A.6)

were σ2
Wt ≡ V art [rWt+1] is the conditional variance of the market return, and were the drift

coefficients ϕV 0 and ϕR0 and the loadings ϕV σ and ϕRσ depend on investor’s preference

parameters and on parameters of the consumption growth dynamics. In this case, mt−1,t

and the disappointing event in equation (A.4) may be written as

mt−1,t = (1− γ) ln δ∗ − γrWt −
(
γ − 1

ψ

)
ϕV σ∆σ2

Wt

Dt =
{
rWt + (1/ψ)ϕV σ∆σ2

Wt < ln (κ/δ∗)
}
,

(A.7)
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where

∆σ2
Wt ≡ σ2

Wt −
ϕRσ
ϕV σ

σ2
Wt−1 and ln δ∗ = ln δ +

1

ψ
(ϕV 0 − ϕR0) .

Our definitions and notations for ∆zV t and ∆σ2
Wt presume that zRt ≈ zV t, meaning that

ϕRσ ≈ ϕV σ. This shows that changes in the welfare valuation ratio can empirically be

proxied by changes in a stock market volatility index, where volatility can be estimated by a

generalized autoregressive conditional heteroscedasticity (GARCH) model, can be computed

from high-frequency index returns (realized volatility), or can be measured by the option-

implied volatility (V IX). Disappointment may occur due to a fall in the market return. It

may also occur following a rise in market volatility. This means that the coefficient ϕV σ in the

definition of disappointment in (A.7) is negative. In fact, when macroeconomic uncertainty

rises, everything else being equal, the investor is pessimistic about the future. She then

assigns a low valuation to the continuation value and is willing to accept with certainty

a lower welfare to avoid the risk in future consumption. Therefore, the ratio of welfare

valuation to current consumption falls. We take as given that ϕV σ < 0 and ϕRσ ≈ ϕV σ,

and we show in our calibration assessment in Section A.8 of this Online Appendix that this

important theoretical implication of the model holds for a broad range of reasonable values

of preference parameters.

Finally, the disappointing event in equation (A.7) may also be expressed as

Dt =
{
rWt − a (σW/σX) ∆σ2

Wt < b
}
, (A.8)

with

a ≡ − (1/ψ)ϕV σ (σX/σW ) and b ≡ ln (κ/δ∗) , (A.9)

where σW = Std [rWt] and σX = Std [∆σ2
Wt] are the respective unconditional volatilities of

the market return and changes in market volatility. Note that ϕV σ < 0 implies a > 0.
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A.1.2 Cross-sectional implications of GDA preferences

For every asset i, optimal consumption and portfolio choice by the representative investor

induces a restriction on the simple excess return Re
it that is implied by the Euler condition:

Et−1

[
MGDA

t−1,tR
e
it

]
= 0 , (A.10)

where Re
it = Rit − Rft denotes the excess return, Rit is the simple gross return of asset i,

and Rft denotes the risk-free simple gross return. Using the definition of MGDA
t−1,t , equation

(A.10) can be written as

Et−1

[
Mt−1,t

(
1 + `I (Dt)

1 + κ1−γ`Et−1 [I (Dt)]

)
Re
it

]
= 0

Et−1 [Mt−1,t (1 + `I (Dt))Re
it] = 0 .

(A.11)

By the law of iterated expectations, the above expression also holds unconditionally:

E [Mt−1,t (1 + `I (Dt))Re
it] = 0 . (A.12)

Dividing both sides by E [Mt−1,t], we get

E [Ht−1,t (1 + `I (Dt))Re
it] = 0 , (A.13)

where Ht−1,t denotes the risk-adjustment density defined by

Ht−1,t ≡
Mt−1,t

E [Mt−1,t]
≈ 1 +mt−1,t − E [mt−1,t] . (A.14)

The log-linear approximation of the nonlinear risk-adjustment density Ht−1,t as shown in

equation (A.14) is common in the asset pricing literature (see for example Yogo, 2006).
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After some algebraic manipulation, (A.13) may be written as

E [Re
it] =

1

1 + `πH [Cov (Re
it,−Ht−1,t) + `Cov (Re

it,−Ht−1,tI (Dt))] (A.15)

where EH [·] denotes the expectation under the risk-adjustment density Ht−1,t and πH ≡

EH [I (Dt)] is the risk-adjusted disappointment probability. Equation (A.15) shows that an

asset premium is the sum of two covariances. The first covariance Cov (Re
it,−Ht−1,t) is the

compensation for regular risks, while the second covariance Cov (Re
it,−Ht−1,tI (Dt)) reveals

compensation for downside risks conditional upon disappointment.

Using the approximation (A.14) in the pricing relation (A.15), we obtain the cross-

sectional linear factor model from the main text:

E [Re
it] = pWσiW + pDσiD + pWDσiWD + pXσiX + pXDσiXD , (A.16)

where the risk prices are given by:

pW =
1

1 + `πHγ

pD = − 1

1 + `πH `

(
1 + γµW +

(
γ − 1

ψ

)
ϕV σµX

)
pWD =

1

1 + `πH `γ

pX =
1

1 + `πH

(
γ − 1

ψ

)
ϕV σ

pXD =
1

1 + `πH `

(
γ − 1

ψ

)
ϕV σ ,

(A.17)

and where µW ≡ E [rWt] and µX ≡ E [∆σ2
Wt] are the means of the market return and changes

in market volatility, respectively.

Let us consider the signs of these risk prices. The consumption-based asset pricing

literature generally agrees on γ > 1, which implies pW > 0. Thus, investors require a

premium for a security that has positive covariance with the market return. Maintaining the
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assumption that γ > 1, it follows from equation (A.17) that pX 6= 0 if and only if ψ < ∞.

Thus, compensation for covariance with changes in market volatility is due to imperfect

intertemporal substitution. The representative investor’s risk aversion γ > 1 and imperfect

intertemporal substitution ψ <∞ together imply that pX,t < 0. The next observation is that

pD 6= 0 if and only if ` 6= 0, regardless of the values of γ and ψ. Compensation for covariance

with the downstate factor I (Dt) is exclusively due to disappointment aversion. Since ` ≥ 0,

the associated risk price is negative, pD,t < 0. Next, pWD 6= 0 if and only if both γ 6= 0 and

` 6= 0. Both risk aversion and disappointment aversion are needed to explain the required

compensation for covariance with the market downside factor. Risk aversion γ > 1 and

disappointment aversion ` > 0 together imply that pWD > 0. Finally, pXD 6= 0 if and only if

γ 6= 1, ` 6= 0, and ψ 6=∞ are all satisfied. Thus, risk aversion, disappointment aversion, and

imperfect intertemporal substitution of the representative investor are all needed to explain

the required compensation for covariance with the volatility downside factor. Recall that we

take ϕV σ < 0 as given , so γ > 1, ` > 0, and ψ <∞ together imply that pXD < 0.

There are two cross-price restrictions that are implied by the risk prices in (A.17). First,

it can be easily seen that

pWD
pW

=
pXD
pX

. (A.18)

Second, using the equations for pWD and pXD, and the definition of a in (A.9), we can write

pXD = −aσW
σX

γ − 1

γ
pWD . (A.19)

If we further assume that the risk aversion, γ, of the representative investor is high enough,

then γ−1
γ
≈ 1, and (A.19) simplifies to

pXD = −aσW
σX

pWD . (A.20)

When estimating the GDA5 model in the paper, we use the assumption γ−1
γ

= 1. We also
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considered γ−1
γ

= 0.75 (which corresponds to γ = 3), and the (unreported) empirical results

are similar to those in the main text.

A.2 Additional restriction that the market is perfectly priced

When the test asset is the market return (i = W ), the GDA5 model can be written as

E [Re
Wt] = λWβWW + λDβWD + λWDβWWD + λXβWX + λXDβWXD , (A.21)

where the betas are calculated from the regression

Re
Wt = αW +βWW rWt +βWDI (Dt) +βWWDrWtI (Dt) +βWX∆σ2

Wt +βWXD∆σ2
WtI (Dt) + εWt

(A.22)

Since the return to be explained (the simple excess return on the market, Re
Wt) and the

market factor (the log-return on the market, rWt) are not exactly the same, non of the betas

from the above regression will be zero. Hence, for (A.21) to hold, we can impose the following

restriction on the downstate premium:

λD =
E [Re

Wt]

βWD
− λW

βWW

βWD
− λWD

βWWD

βWD
− λX

βWX

βWD
− λXD

βWXD

βWD
. (A.23)

A similar restriction can be derived if we do not pick the downstate premium, but another

one instead (e.g., λW or λWD). Also, it is straightforward to derive a similar restriction for

the GDA3 model. When requiring the market to be perfectly priced, we impose the linear

restriction in (A.23) on the downstate premium.

If the market factor is the simple excess return on the market, then (A.22) becomes

Re
Wt = α′W +β′WWR

e
Wt+β

′
WDI (Dt)+β′WWDR

e
WtI (Dt)+β′WX∆σ2

Wt+β
′
WXD∆σ2

WtI (Dt)+εWt .

(A.24)
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It is easy to see that in this case β′WW = 1 and α′W = β′WD = β′WWD = β′WX = β′WXD = 0.

Hence, (A.21) becomes

E [Re
Wt] = λW . (A.25)

That is, imposing the restriction that the market is priced correctly is equivalent to setting

the market premium equal to the expected excess return on the market. Table A.1 shows

the risk premium estimates for the GDA models with the restriction that the market return

is correctly priced when Re
Wt is used as the market factor.

A.3 Further risk premium estimates

This section provides risk premium estimates from various specifications that are left out

from the main text for brevity.

Table 3 of the main text reports risk premium estimates for the GDA3, GDA5, and unre-

stricted GDA5 models without imposing the restriction that the market portfolio is perfectly

priced using five selected sets of portfolios. Results for the other five sets of portfolios from

the benchmark analysis are presented in Table A.2.

Table 4 of the main text reports risk premium estimates for alternative models using five

selected sets of portfolios from our benchmark analysis. Results for the other five sets of

portfolios from the benchmark analysis are presented in Table A.3.

Table 6 of the main text shows risk premium estimates for the GDA models when corpo-

rate bonds, sovereign bonds, and commodities are added to the set of test assets. Correspond-

ing results for the alternative models considered in the paper are presented in Table A.4.

We also consider the robustness of our results when different test portfolios (compared

to the main text) are chosen to represent a given asset class. The sources of the return

data are described in Appendix A of the main text. There are two additional sets of port-

folios used here: 10 US stock portfolios sorted by industry (10 Ind) from Kenneth French’s

website and six currency portfolios from Lustig et al. (2011). Lustig et al. (2011) use 35
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currencies to create six portfolios by sorting them based on their respective interest rates.

The sample period of the original paper is from November 1983 to December 2009, but the

authors provide an updated version of the return data on their website.∗ We use data up to

December 2013. The risk premium estimates for the GDA3 and GDA5 models are presented

in Table A.5. Conclusions regarding the signs, magnitudes, and statistical significances of

the risk premiums are very similar to those obtained in the main text for the benchmark

test portfolios.

A.4 Different disappointment thresholds

For our main results the disappointment threshold is set to b = −0.03. Table A.6 and Ta-

ble A.7 present risk premium estimates for the GDA models using the values b ∈ {0,−0.015,−0.04}.

In the following discussion, we focus our attention to the results corresponding to the GDA5

in Table A.7.

When b = −0.04, the disappointment threshold becomes lower. The disappointment

probability with Dt = {rWt < −0.04} and using the period between 1964 and 2013 is 12.3%,

which is very close to the 16.3% obtained in our benchmark scenario with b = −0.03.

Consequently, the results remain similar: all the estimated risk premiums in Panel C of

Table A.7 are statistically significant and have the expected signs (the single exception is

λD for the size/book-to-market portfolios, which is not statistically significant, but has the

expected sign). The magnitudes of the premiums are similar to the benchmark scenario. In

terms of model fit, the b = −0.04 specification provides lower RMSPE for the size/book-

to-market and the option portfolios, but the b = −0.03 specification provides lower pricing

errors for the other three portfolios.

As the threshold becomes higher, disappointment is triggered more easily. The disap-

pointment probability with Dt = {rWt < b} is 26.7% for b = −0.015, and 38.5% for b = 0.

∗Return data on the currency portfolios of Lustig et al. (2011) are obtained from Adrien Verdelhan’s
website at http://web.mit.edu/adrienv/www/Data.html
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Risk premium estimates for the GDA5 with these thresholds are reported in Panel A and B

of Table A.7, respectively. The estimated risk premiums, with the exception of λD, have the

expected sign and the estimates are statistically significant. As the disappointment thresh-

old increases, the premium on the downstate factor becomes insignificant. In some cases

it becomes positive and statistically significant. That is, disappointing events should be

sufficiently out in the left tail so that the downstate factor is priced in the cross-section. In

terms of model fit, the lowest RMSPE is provided by the models with low disappointment

threshold (either b = −0.03 or b = −0.04) for all five sets of portfolios reported in Table A.7.

A.5 Different measures of market volatility

In this section we explore how the estimates for the GDA5 model change if different measures

of market volatility are considered. In the main text, monthly volatility is measured as the

realized volatility of the daily market returns during the month:

σ2
Wt =

Nt∑
τ=1

(rWt,τ − µWt)
2 , (A.26)

where rWt,τ is the daily market return on the τ -th trading day of month t, µWt is the mean

of the daily market returns in month t, and Nt is the number of trading days in month t.

The alternative measures considered here are the option-implied volatility index (VIX),

realized volatility calculated from intra-daily market returns, and a model implied volatil-

ity calculated using an EGARCH specification. The option-implied monthly volatility is

calculated as

σ2,V IX
Wt =

1

Nt

Nt∑
τ=1

(
V IXt,τ

100 ·
√

12

)2

, (A.27)

where V IXt,τ is the value of the VIX index on the τ -th trading day of month t. The daily

value of the VIX index is obtained from CBOE through the WRDS service. Monthly realized
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volatility from intra-daily market returns is calculated as

σ2,RV
Wt =

Nt∑
τ=1

Nτ∑
j=1

r2
Wt,τ,j , (A.28)

where rWt,τ,j denotes the 10-minute log return series on the τ -th trading day of month t and

Nτ is the number intra-daily returns within a trading day. We use intra-daily return series

of the S&P 500. The data comes from Olsen Financial Technologies. Finally, in the model

based approach, we fit a model with conditional heteroskedasticity to the daily log market

return series rWτ . We consider the EGARCH(1,1,1) by Nelson (1991),

rWτ = µ+ σWτετ , with ετ
iid∼ N (0, 1)

ln
(
σ2
Wτ

)
= ω + ν

(
|ετ | −

√
2/π
)

+ θετ + φ ln
(
σ2
Wτ−1

) (A.29)

Then the model-implied monthly volatility is calculated as

σ2,EGARCH
Wt =

Nt∑
τ=1

σ̂2
Wt,τ , (A.30)

where σ̂2
Wt,τ is the estimated daily variance on the τ -th trading day of month t. Change in

monthly volatility for all of the above measures is calculated as

∆σ2
Wt = σ2

Wt − σ2
Wt−1 . (A.31)

Note that the measures are available for different time periods. The VIX data is available

starting from 1986 and our intra-daily return data covers only the period from February 1986

to September 2010. The model implied volatility is available for the entire sample period.

We use the longest possible sample for each specification.

Risk premium estimates are presented in Table A.8. The results are similar across dif-

ferent volatility measures. The signs on the risk premiums are as expected and, apart from

11



a few cases, the estimated risk premiums are statistically significant. It is hard to compare

the model fit across volatility measures, since the panels in Table A.8 correspond to differ-

ent sample periods. However, the RMSPE to root-mean-squared-returns ratios (reported in

brackets) are similar across the different measures.

A.6 Additional scatter plots of results in the main text

Figure A.1 to Figure A.4 show scatter plots of actual versus predicted returns corresponding

to three different sets of portfolios and seven asset pricing models. The models are the same

as in Figure 1 of the main text, and the portfolios are also from the main text (for detailed

description see Appendix A of the main text):

• 6 (3×2) size/book-to-market, 6 option, and 6 currency portfolios in Figure A.1,

• 25 (5×5) size/book-to-market portfolios in Figure A.2,

• 25 (5×5) size/momentum portfolios in Figure A.3, and

• 54 option portfolios from Constantinides et al. (2013) in Figure A.4.

A.7 Option sensitivities to the GDA factors

In the emprical analysis we use the index option portfolios of Constantinides et al. (2013),

who create leverage-adjusted (to have a target CAPM beta of one) portfolios of S&P 500

index options sorted on moneyness. To achieve a target CAPM beta of one, they approximate

the elasticity of the options with respect to the market index with the elasticity implied by

the Black and Scholes (1973) model:

ϑW ≡
∂π

∂S

∣∣∣∣
S=S0

S0

π0

, (A.32)
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where S0 is the current price of the underlying, π0 is the current price of the option, and

the partial derivative is calculated from the Black-Scholes formula. Then they create a

hypothetical portfolio that invests ϑ−1
W dollars in the option and 1 − ϑ−1

W dollars in the

risk-free rate. In our empirical analysis, we use these hypothetical portfolios. Panel A of

Figure A.5 shows the ϑW values of options with different moneyness (K/S0) levels.† Note

that the elasticity is ϑW > 1 for call options and ϑW < −1 for put options. Therefore, a

leverage-adjusted call option portfolio consists of a long position in a fraction of a call and

some investment in the risk-free rate, while a leverage-adjusted put portfolio consists of a

short position in a fraction of a put and more than 100% investment in the risk-free rate.

To assess the options’ sensitivity to the market downside factor, we calculate a measure

inspired by the ϑW of Constantinides et al. (2013): the sensitivity to changes in the price of

the underlying after a 5% drop in the price of the underlying. That is, we calculate

ϑWD ≡
∂π

∂S

∣∣∣∣
S=0.95S0

S0

π0

. (A.33)

Since the index option portfolios we analyze invest ϑ−1
W fraction into the option, the sensitivity

of these portfolios to the market downside factor is ϑ−1
W ϑWD. This value is shown in Panel B

of Figure A.5 for different moneyness levels. OTM put options have the largest sensitivity,

followed by ITM puts, then ITM calls, and finally OTM calls. For comparison, we show

various betas of the option portfolios in Table A.9. The market downside beta, β−iW =

Cov(Reit,rWt|Dt)
V ar(rWt|Dt)

, measures the portfolio’s sensitivity to the market, given disappointment. Note

that since ϑWD is only an approximation based on the Black-Scholes formula, we do not

expect the ϑ−1
W ϑWD and β−iW values to exactly coincide. However, it is clear that the ordering

of the β−iW values in Table A.9 is the same as that of the ϑ−1
W ϑWD values in Panel B of

Figure A.5.

†We use S0 = 10, T = 1/12 (one month maturity), 30% annual volatility for the underlying, and a
risk-free rate of zero when creating the plots in Figure A.5. The general conclusions do not hinge on these
particular parameter values.
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To assess the options’ sensitivity to volatility, we calculate

ϑX ≡
∂π

∂σ

∣∣∣∣
S=S0

S0

π0

, (A.34)

where σ denotes the volatility of the underlying. Again, the sensitivity of the option portfolios

can be calculated as ϑ−1
W ϑX . This value is shown in Panel C of Figure A.5. OTM put options

have the lowest sensitivity, followed by ITM puts, then ITM calls, and finally OTM calls have

the highest sensitivity. This is in line with the ordering of the volatility betas in Table A.9,

measured as βiX =
Cov(Reit,∆σ2

Wt)
V ar(∆σ2

Wt)
.

Finally, to assess the sensitivity of these portfolios to the volatility downside factor, we

calculate the sensitivity to changes in the volatility after the price of the underlying drops

by 5%:

ϑXD ≡
∂π

∂σ

∣∣∣∣
S=0.95S0

S0

π0

(A.35)

The ϑ−1
W ϑXD values are shown in Panel D of Figure A.5. The sensitivities have the same

ordering as in Panel C, which is in line with the ordering of the volatility downside betas in

Table A.9, measured as β−iX =
Cov(Reit,∆σ2

Wt|Dt)
V ar(∆σ2

Wt|Dt)
.

A.8 Calibration assessment and estimation with individual stocks

In this section, we further strengthen our main empirical results by showing that they reflect

a rational economic model where agents care about the level and volatility of consumption,

and are aware of downside risk in consumption growth. In other words, in this section, we

rationalize, in the context of a consumption-based reduced-form general equilibrium setting,

the empirical evidence on cross-sectional asset pricing by GDA factors as presented and

discussed in the main text.

We analyze the factor risk premiums, λf with f ∈ {W,X,D,WD, XD}, generated by a

GDA endowment economy, reasonably calibrated to match the risk-free rate and the aggre-

14



gate stock market behavior. In setting up the calibration, we closely follow Bonomo et al.

(2011). They study an asset pricing model with generalized disappointment aversion and

long-run volatility risk and show that it produces first and second moments of price-dividend

ratios and asset returns as well as return predictability patterns in line with the data. Using

the same endowment dynamics, we focus on the cross-sectional implications by studying the

model-implied disappointment probability and factor risk premiums.

We assume that consumption and equity dividend growth are conditionally normal, un-

predictable, and their conditional variances fluctuate according to a two-state Markov chain:

∆ct = µ+
√
ωc (st−1)εct

∆dt = µ+ νd
√
ωc (st−1)εdt ,

(A.36)

where ∆ct is the aggregate consumption growth, ∆dt is the equity dividend growth, st−1

indicates the state of the world, and εct and εdt follow a bivariate IID standard normal process

with mean zero and correlation ρ. The two states of the economy naturally correspond to a

low (L) and a high (H) volatility state.

The endowment dynamics is calibrated at the monthly frequency to match the sample

mean, volatility, and first-order autocorrelation of the real annual US consumption growth

and stock market dividend growth from 1930 to 2012. These moments remain stable if

the data are updated until more recently. Panel A of Table A.10 shows the parameters of

the calibrated endowment process. The state transition probabilities are pLL = 0.9989 and

pHH = 0.9961, and the corresponding long-run probabilities are 78.9% and 21.1% for the

low and high volatility states, respectively. We set the preference parameters similar to the

benchmark calibration of Bonomo et al. (2011). The values are presented in Panel B of

Table A.10. For the GDA3 model, we simply set ψ =∞, everything else being equal.

The first set of results in Panel C shows that our calibration matches well the first and

second moments of consumption and dividend growth in the data. The model-implied an-
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nualized (time-averaged) mean, volatility, and first-order autocorrelation of consumption

growth are respectively 1.80%, 2.07%, and 0.25, and are consistent with the observed annual

values of 1.84%, 2.20%, and 0.48, respectively. The mean, volatility, and first-order auto-

correlation of dividend growth are respectively 1.80%, 13.29%, and 0.25, and the observed

annual values are 1.05%, 13.02%, and 0.11, respectively.

Given these endowment dynamics, we solve for welfare valuation ratios in closed form,

which we combine with consumption growth to derive the endogenous market return and

market variance processes. We refer the reader to Bonomo et al. (2011) for formal derivations.

The second set of results in Panel C of Table A.10 shows that the model generates moments of

asset prices that are consistent with empirical evidence. The level of the risk-free rate, 0.46%

for GDA3 and 0.76% for GDA5, is close to the actual value of 0.57%. The equity premium,

8.06% for GDA3 and 6.61% for GDA5, is slightly larger than the actual value of 5.50%, but

remains comparable to other sample values estimated in the literature, for example 7.25%

in Bonomo et al. (2011). The equity volatility generated by the model, 17.65% for GDA3

and 16.84% for GDA5, is also comparable to the actual value of 20.25%.

As mentioned earlier, the main purpose of this calibration is to study the model implica-

tions for the disappointing event and the GDA factor risk premiums. The model-implied dis-

appointment probability and factor risk premiums are reported in Panel D of Table A.10. The

unconditional model-implied monthly disappointment probability is 17.43% for the GDA3

model and 16.06% for the GDA5 model. These numbers are closely related to their corre-

sponding empirical values of 16.3% and 16.0% respectively, as discussed in Section 3.2.1. of

the main article. Let us focus now on the monthly model-implied factor risk premiums in

Panel D of Table A.10. The market risk premium is equal to λW = 0.0065 for the GDA3

model, and λW = 0.0042 for the GDA5, while the volatility risk premium is λX = 0 for the

GDA3, and λX = −1.38× 10−6 in the GDA5 model. The market downside risk premium is

λWD = 0.0038 for the GDA3 model, and λWD = 0.0023 for the GDA5, while the volatility

downside risk premium is λXD = 0 for the GDA3, and λXD = −1.16× 10−6 for the GDA5.
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Finally, the downside risk premium is λD = −0.3494 for the GDA3, and λD = −0.3010 for

the GDA5.

The λ values from the calibration are to be compared to their data counterparts estimated

in the empirical section of the main text. Our benchmark for comparison are factor risk

premium estimates when all three asset classes (stocks, index options, and currencies) are

included in the estimation. The results are reported in the last two columns of Table 2 in

the main text. The model-implied values of the market risk premium and the downstate risk

premium compare favorably to their data counterparts as they lie within one or two standard

errors around their estimated data counterparts. The remaining model-implied factor risk

premiums are much lower in magnitude than the empirical estimates. However, the estimated

values must be considered with care due to at least two main sources of bias. First, as

discussed in Section 3 of the main article, the estimation uses an empirical proxy of the true

market return with potentially very different properties, especially moments and dynamics.

Second, our estimation in the main article uses standard sets of few portfolios as test assets.

Ang et al. (2016), and Gagliardini et al. (2016) discuss cross-sectional tests using a large cross-

section of individual stocks versus fewer portfolios. They prove theoretically and observe

empirically that using portfolios may destroy important information necessary for obtaining

efficient estimates of the cross-sectional risk premiums, and those risk premium estimates

obtained from a large cross-section of individual stocks can substantially depart from risk

premium estimates on standard sets of portfolios. Their main point is that individual stocks

provide a much larger dispersion in betas, an important prior to cross-sectional tests. To

illustrate the effect of the second point, we carry out an empirical exercise in the following

subsection, where we use individual stocks to estimate factor risk premiums in the GDA

models.
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A.8.1 Risk premium estimates using individual stocks

We follow the methodology used by Ang et al. (2006). In particular, we use the two-stage

cross-sectional regression method of Fama and MacBeth (1973). In the first stage, we use

short-window regressions to estimate the stocks’ sensitivities (betas) to the factors. For every

month t ≥ 12 in the sample, we use twelve months of daily data from month t−11 to month

t to run a time-series regression for each stock i that has return data over the given period.

For example, in case of the GDA5, we run the regression

Re
i,τ = αi,t +βiW,trW,τ +βiWD,trW,τI (Dτ ) +βiD,tI (Dτ ) +βiX,t∆σ

2
W,τ +βiXD,t∆σ

2
W,τI (Dτ ) + εiτ

(A.37)

where τ refers to daily observations over the one-year period and t refers to the current

month. The second stage of the Fama-Macbeth procedure corresponds to estimating the

cross-sectional regressions

Re
i,t+1 = βiW,tλW,t + βiWD,tλWD,t + βiD,tλD,t + βiX,tλX,t + βiXD,tλXD,t + ηit, (A.38)

where the dependent variable is the excess return for stock i in month t + 1. That is the

betas, calculated using data from months t − 11 to t, are related to stock returns in the

following moth (t + 1). These two steps are repeated for all months in the sample. The

unconditional factor risk premiums are obtained by averaging the lambdas over the sample

period, i.e., λ̂f = Ê [λf,t] for factor f . Since this approach uses overlapping information

when calculating the betas, we calculate standard errors using the Newey and West (1987)

estimator (with 12 lags).

We use all common stocks traded on the NYSE, AMEX and NASDAQ markets (the data

comes from CRSP). The sample period is from July, 1963 to December, 2013. To measure

daily market volatility used in the first stage regressions, we fit an exponential GARCH to
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the time series of daily market returns. Note that our unreported analysis shows that the

risk premium estimates are robust to using alternatives ways to measure market volatility,

including the options-implied volatility index (VIX), realized volatility from intra-daily mar-

ket returns, or the volatility implied by different GARCH specifications. The disappointing

event in the first-stage regressions is defined as Dτ =
{
rW,τ − aσWσX ∆σ2

W,τ < q0.16

}
. Note

that the disappointment threshold, q0.16, is set in each one-year period for the first-stage re-

gressions so that the disappointment probability (i.e., the percentage of disappointing days)

is 16%. We apply this definition to match the 16% unconditional probability of disappoint-

ment from the empirical section of the main text. Also note that results are robust to varying

the probability of disappointment between 15% and 20%.

Table A.11 shows the risk premium estimates for the GDA3 and several GDA5 models.

We use a = 0 for the GDA3 and a ∈ {0, 0.5, 1} for the GDA5. All the estimated risk

premiums are statistically significant and have the expected signs. Moreover, for all risk

factors, the estimated values are comparable in magnitude to the calibration-implied factor

risk premiums in Panel D of Table A.10.

A.8.2 Sensitivity of the calibration results

We also conduct a sensitivity analysis of our calibration results. We study how the quantities

of interest vary as preference parameters change within reasonable ranges. We set the regular

risk aversion parameter γ and GDA threshold parameter κ to their base case values (γ = 2.5

and κ = δ = 0.998) and vary the disappointment aversion parameter ` ∈ [1, 4] and the

elasticity of intertemporal substitution ψ ∈ {0.75, 1, 1.5,∞}. Results are shown in Figures

A.6 and A.7. Panels A and B of Figure A.6 show that the model-implied annualized mean

and volatility of the risk-free rate belong to a reasonable range of values used in the asset

pricing literature. The same goes for the mean and volatility of the equity excess return in

Panels G and H.

Panels C and D of Figure A.6 show that the welfare valuation ratios loads negatively on
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market volatility, consistent with the economic intuition that asset values and, consequently,

investor’s wealth and welfare fall in periods of high uncertainty in financial markets. The

model-implied loadings of the welfare valuation ratios onto market volatility are ϕV σ and

ϕRσ are very close, as the ratio of loadings ϕRσ/ϕV σ is close to one. Thus, panels C and D

confirm that ϕRσ < 0 and ϕRσ ≈ ϕV σ hold for reasonable preference parameter values.

Figure A.7 shows the sensitivity of the factor risk premiums. Again, the lower magnitudes

of model-implied premiums compared to their estimated data counterparts may directly re-

sult from the fact that our empirical proxy of the market return, the return on a stock

market index may have different time series properties than the true (but unobservable)

market return, besides other sources of estimation bias such as the use of standard sets of

fewer portfolios rather than a large cross-section of individual stocks. Factor risk premiums

in Figure A.7 are order of magnitude comparable to estimates based on individual stocks

reported in Table A.11. The signs of the risk premiums are, however, all consistent with

economic intuition and our estimation results in the main text. Finally, Panel F of Fig-

ure A.7 shows the disappointment probability when we vary the disappointment aversion

parameter `.
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Table A.1: Risk premiums when the market is priced correctly and Re
W is used

Stocks 25 S×BM 25 S×Mom 6 S×BM 6 S×Mom
Options 54 6 6
Currencies 6 6

A. GDA3
λW 0.0050i 0.0050i 0.0052i 0.0050i 0.0050i

λD 0.0726 -0.2790 -0.1596 -0.1217 -0.2274∗

(0.1606) (0.3145) (0.3270) (0.1499) (0.1300)
λWD 0.0096 0.0245∗∗∗ 0.0173∗ 0.0182∗∗∗ 0.0203∗∗∗

(0.0102) (0.0079) (0.0098) (0.0060) (0.0044)

RMSPE 27.4 [0.36] 22.2 [0.29] 12.3 [0.20] 22.4 [0.32] 22.2 [0.31]

B. GDA5
λW 0.0050i 0.0050i 0.0052i 0.0050i 0.0050i

λD -0.3276∗∗∗ -0.2206∗ -0.2351 -0.3039∗∗ -0.2344∗∗

(0.1261) (0.1209) (0.1697) (0.1303) (0.1123)
λWD 0.0256∗∗ 0.0198∗∗ 0.0196∗∗∗ 0.0234∗∗∗ 0.0192∗∗∗

(0.0129) (0.0085) (0.0052) (0.0052) (0.0041)
λX -0.0011i -0.0013i -0.0014i -0.0012i -0.0013i

λXD -0.0020i -0.0018i -0.0018i -0.0018i -0.0013i

a 0.5012 0.4361 0.3826 0.3691 0.1154
(0.5193) (1.1508) (0.8836) (0.5489) (0.6698)

RMSPE 24.0 [0.32] 19.8 [0.26] 11.7 [0.19] 22.1 [0.31] 20.8 [0.29]

The table shows risk premium estimates for the GDA models using various sets of test portfolios (in columns;
the same sets of portfolios as in Table 4 of the main text). The simple excess return on the market (ReW )
is used as the market factor as opposed to our benchmark specification, where the log market return (rW )
is used. The premiums are estimated using GMM. Standard errors are in parenthesis. Values with the
superscript i are imposed by the restriction that the market portfolio should be correctly priced (and by
cross-price restrictions for the GDA5). RMSPE is the root-mean-squared pricing error of the model in basis
points per month and the RMSPE to root-mean-squared returns ratio is reported in brackets.
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Table A.2: Risk premiums when the perfect market pricing restriction is not imposed

Stocks 10 S,B,M 25 S×OP 25 S×INV 25 S×BM 25 S×Mom
Options 24 24

A. GDA3
λW 0.0072∗∗∗ 0.0069∗∗∗ 0.0067∗∗∗ 0.0067∗∗ 0.0068∗∗

(0.0021) (0.0022) (0.0021) (0.0031) (0.0032)
λD -0.3075∗∗∗ -0.2068∗∗ 0.0935 -0.1460∗ -0.1847∗

(0.0984) (0.0832) (0.0784) (0.0831) (0.0955)
λWD 0.0210∗∗∗ 0.0152∗ 0.0060 0.0167∗∗∗ 0.0178∗∗∗

(0.0062) (0.0085) (0.0064) (0.0042) (0.0040)

RMSPE 17.4 [0.27] 17.4 [0.24] 21.9 [0.29] 21.5 [0.31] 21.1 [0.30]

B. GDA5
λW 0.0073∗∗∗ 0.0072∗∗∗ 0.0076∗∗∗ 0.0074∗∗ 0.0076∗∗∗

(0.0019) (0.0022) (0.0022) (0.0032) (0.0028)
λD -0.2662∗∗ -0.1826∗∗ -0.0427 -0.2266∗∗∗ -0.1835

(0.1134) (0.0916) (0.0966) (0.0862) (0.1183)
λWD 0.0192∗∗∗ 0.0187∗∗ 0.0181∗∗ 0.0202∗∗∗ 0.0180∗∗∗

(0.0062) (0.0094) (0.0089) (0.0051) (0.0053)
λX -0.0006i -0.0014i -0.0026i -0.0007i -0.0011i

λXD -0.0012i -0.0019i -0.0033i -0.0020i -0.0019i

a 0.5885 0.5336 0.7776 0.7026 0.6178
(0.4240) (0.5340) (0.6250) (0.4563) (0.4908)

RMSPE 16.3 [0.26] 16.5 [0.23] 19.7 [0.26] 18.7 [0.27] 17.8 [0.25]

C. Unrestricted GDA5
λW 0.0077∗∗∗ 0.0078∗∗∗ 0.0103∗∗∗ 0.0076∗∗ 0.0070∗∗

(0.0020) (0.0021) (0.0023) (0.0032) (0.0030)
λD -0.2697∗∗∗ -0.3868∗∗∗ -0.0376 -0.1883∗∗ -0.1162

(0.0929) (0.1186) (0.0892) (0.0937) (0.0964)
λWD 0.0215∗∗∗ 0.0274∗∗∗ 0.0323∗∗∗ 0.0188∗∗∗ 0.0124∗∗

(0.0057) (0.0096) (0.0088) (0.0064) (0.0056)
λX -0.0008 -0.0045∗∗∗ -0.0055∗∗∗ -0.0029∗∗∗ -0.0031∗∗∗

(0.0008) (0.0013) (0.0009) (0.0011) (0.0011)
λXD -0.0013 -0.0054∗∗∗ -0.0073∗∗∗ -0.0040∗∗∗ -0.0036∗∗∗

(0.0008) (0.0016) (0.0011) (0.0015) (0.0010)

RMSPE 16.2 [0.25] 13.6 [0.19] 17.0 [0.22] 16.6 [0.24] 16.5 [0.23]

The table shows risk premium estimates for GDA models using various sets of test portfolios without imposing
the restriction that the market portfolio is perfectly priced. The premiums are estimated using GMM.
Standard errors are in parenthesis. Values with the superscript i are imposed by cross-price restrictions for
the GDA5. RMSPE is the root-mean-squared pricing error of the model in basis points per month and the
RMSPE to root-mean-squared returns ratio is reported in brackets.
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Table A.3: Risk premiums for alternative models

Stocks 10 S,B,M 25 S×OP 25 S×INV 25 S×BM 25 S×Mom
Options 24 24

A. VOL
λW 0.0053∗∗∗ 0.0054∗∗∗ 0.0055∗∗∗ 0.0057∗∗∗ 0.0058∗∗∗

(0.0005) (0.0005) (0.0005) (0.0002) (0.0001)
λX -0.0019i -0.0021i -0.0025i -0.0026i -0.0028i

RMSPE 23.4 [0.37] 19.1 [0.27] 22.6 [0.30] 24.1 [0.35] 26.4 [0.38]

B. Ang et al. (2006)
λW 0.0066∗∗∗ 0.0065∗∗∗ 0.0065∗∗∗ 0.0069∗∗∗ 0.0069∗∗∗

(0.0007) (0.0019) (0.0015) (0.0005) (0.0004)
λD 0i 0i 0i 0i 0i

λWD 0.0142i 0.0132i 0.0137i 0.0135i 0.0132i

RMSPE 21.9 [0.34] 19.0 [0.26] 23.4 [0.31] 24.3 [0.35] 26.0 [0.37]

C. Lettau et al. (2014)
λW 0.0062∗∗∗ 0.0063∗∗∗ 0.0066∗∗∗ 0.0068∗∗∗ 0.0068∗∗∗

(0.0009) (0.0018) (0.0015) (0.0005) (0.0004)
λD 0.0360i 0.0457i 0.0577i 0.0519i 0.0480i

λWD 0.0095i 0.0105i 0.0118i 0.0111i 0.0107i

RMSPE 23.0 [0.36] 19.3 [0.27] 23.0 [0.30] 26.7 [0.39] 28.7 [0.41]

D. Carhart (1997)
λW 0.0051∗∗∗ 0.0054∗∗∗ 0.0053∗∗∗ 0.0058∗∗∗ 0.0055∗∗∗

(0.0000) (0.0002) (0.0001) (0.0004) (0.0001)
λSMB 0.0020i 0.0014i 0.0016i 0.0021i 0.0026i

λHML 0.0033 0.0080∗∗ 0.0075∗∗∗ 0.0045∗∗ 0.0061
(0.0025) (0.0033) (0.0018) (0.0023) (0.0070)

λWML 0.0062∗∗∗ 0.0194 0.0151 0.0289 0.0067∗

(0.0023) (0.0171) (0.0117) (0.0330) (0.0039)

RMSPE 9.7 [0.15] 10.8 [0.15] 9.5 [0.13] 32.1 [0.46] 32.4 [0.46]

The table shows risk premium estimates for different models using various sets of test portfolios. The details
of the test portfolios are provided in Appendix A of the main paper. The premiums are estimated using
GMM. Standard errors are in parenthesis. Values with the superscript i are imposed by the restriction that
the market portfolio should be correctly priced (and by restrictions that are discussed in detail in the main
text for the models in Panel B and Panel C). RMSPE is the root-mean-squared pricing error of the model
in basis points per month and the RMSPE to root-mean-squared returns ratio is reported in brackets.
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Table A.4: Risk premiums with additional asset classes
Stocks 6 S×BM 6 S×BM 6 S×BM 6 S×BM
Options 6 6 6 6
Currencies 6 6 6 6
Corp. bonds 5 5
Sov. bonds 6 6
Commodities 6 6

A. CAPM
λW 0.0051i 0.0051i 0.0051i 0.0051i

RMSPE 45.5 [0.71] 44.5 [0.71] 48.2 [0.73] 42.4 [0.75]

B. Ang et al. (2006)
λW 0.0073∗∗∗ 0.0068∗∗∗ 0.0069∗∗∗ 0.0066∗∗∗

(0.0005) (0.0005) (0.0007) (0.0006)
λD 0i 0i 0i 0i

λWD 0.0177i 0.0140i 0.0146i 0.0128i

RMSPE 24.1 [0.38] 33.2 [0.53] 28.5 [0.43] 30.9 [0.55]

C. Lettau et al. (2014)
λW 0.0073∗∗∗ 0.0066∗∗∗ 0.0066∗∗∗ 0.0064∗∗∗

(0.0005) (0.0005) (0.0007) (0.0006)
λD 0.0901i 0.0560i 0.0549i 0.0429i

λWD 0.0146i 0.0112i 0.0111i 0.0099i

RMSPE 27.9 [0.44] 35.8 [0.57] 32.5 [0.49] 32.9 [0.58]

D. VOL
λW 0.0057∗∗∗ 0.0057∗∗∗ 0.0057∗∗∗ 0.0056∗∗∗

(0.0002) (0.0002) (0.0002) (0.0002)
λX -0.0035i -0.0034i -0.0034i -0.0033i

RMSPE 26.0 [0.41] 26.9 [0.43] 26.4 [0.40] 26.6 [0.47]

E. Carhart (1997)
λW 0.0054∗∗∗ 0.0055∗∗∗ 0.0054∗∗∗ 0.0054∗∗∗

(0.0002) (0.0004) (0.0002) (0.0001)
λSMB 0.0025i 0.0020i 0.0024i 0.0022i

λHML 0.0041 0.0045∗ 0.0044 0.0047
(0.0030) (0.0027) (0.0032) (0.0033)

λWML 0.0158 0.0238 0.0148 0.0168
(0.0159) (0.0295) (0.0167) (0.0121)

RMSPE 41.4 [0.65] 40.7 [0.65] 44.1 [0.66] 38.3 [0.68]

The table shows risk premium estimates for the GDA models when we add corporate bond, sovereign bond,
and commodity futures portfolios to our benchmark set of test assets. The benchmark set of test assets
consists of 6 stock portfolios (size/book-to-market), 6 option portfolios, and 6 currency portfolios. The
premiums are estimated using GMM. Standard errors are in parenthesis. RMSPE is the root-mean-squared
pricing error of the model in basis points per month and the RMSPE to root-mean-squared returns ratio is
reported in brackets.
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Table A.6: Risk premiums for the GDA3 with alternative disappointment thresholds

Stocks 25 S×BM 25 S×Mom 6 S×BM 6 S×Mom
Options 54 6 6
Currencies 6 6

A. b = 0
λW 0.0063∗∗∗ 0.0065∗∗∗ 0.0069∗∗∗ 0.0073∗∗∗ 0.0071∗∗∗

(0.0006) (0.0006) (0.0005) (0.0006) (0.0005)
λD -0.0046i -0.1026i 0.0345i 0.2780i 0.1661i

λWD 0.0144∗∗∗ 0.0177∗∗∗ 0.0148∗∗∗ 0.0170∗∗∗ 0.0166∗∗∗

(0.0047) (0.0041) (0.0037) (0.0040) (0.0033)

RMSPE 25.8 [0.34] 23.2 [0.30] 12.6 [0.20] 17.6 [0.25] 22.6 [0.32]

B. b = −0.015
λW 0.0054∗∗∗ 0.0068∗∗∗ 0.0069∗∗∗ 0.0072∗∗∗ 0.0069∗∗∗

(0.0007) (0.0004) (0.0005) (0.0005) (0.0006)
λD -0.2547i -0.1276i -0.0899i 0.1276i -0.0202i

λWD 0.0104 0.0205∗∗∗ 0.0156∗∗∗ 0.0164∗∗∗ 0.0168∗∗∗

(0.0093) (0.0048) (0.0052) (0.0043) (0.0032)

RMSPE 25.4 [0.34] 23.5 [0.31] 12.6 [0.20] 21.8 [0.31] 23.8 [0.33]

C. b = −0.04
λW 0.0066∗∗∗ 0.0071∗∗∗ 0.0069∗∗∗ 0.0070∗∗∗ 0.0069∗∗∗

(0.0016) (0.0007) (0.0005) (0.0006) (0.0004)
λD 0.1962i -0.2206i -0.2370i -0.1697i -0.2096i

λWD 0.0051 0.0256∗∗∗ 0.0217∗ 0.0218∗∗∗ 0.0229∗∗∗

(0.0135) (0.0077) (0.0114) (0.0057) (0.0066)

RMSPE 20.9 [0.28] 25.3 [0.33] 11.6 [0.19] 22.6 [0.32] 24.1 [0.34]

The table shows risk premium estimates for the GDA3 model when the disappointing event is defined as
Dt = {rW,t < b}. The value of b varies across panels. The test portfolios are the same as in Table 4
of the main text. The premiums are estimated using GMM. Standard errors are in parenthesis. Values
with the superscript i are imposed by the restriction that the market portfolio should be correctly priced.
RMSPE is the root-mean-squared pricing error of the model in basis points per month and the RMSPE to
root-mean-squared returns ratio is reported in brackets.
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Table A.7: Risk premiums for the GDA5 with alternative disappointment thresholds
Stocks 25 S×BM 25 S×Mom 6 S×BM 6 S×Mom
Options 54 6 6
Currencies 6 6

A. b = 0
λW 0.0075∗∗∗ 0.0064∗∗∗ 0.0068∗∗∗ 0.0067∗∗∗ 0.0069∗∗∗

(0.0015) (0.0004) (0.0006) (0.0008) (0.0005)
λD 0.2182i -0.1639i -0.0214i 0.2496i 0.1304i

λWD 0.0206∗ 0.0155∗∗∗ 0.0139∗∗∗ 0.0121∗∗ 0.0147∗

(0.0106) (0.0050) (0.0034) (0.0051) (0.0077)
λX -0.0028i -0.0009i -0.0017i -0.0031i -0.0024i

λXD -0.0033i -0.0013i -0.0018i -0.0029i -0.0026i

a 0.4590 0.3673 0.2338 0.6317 0.2973
(0.7554) (0.5533) (1.1975) (0.8769) (1.2784)

RMSPE 22.5 [0.30] 19.2 [0.25] 12.9 [0.21] 20.5 [0.29] 23.2 [0.33]
B. b = −0.015
λW 0.0076∗∗∗ 0.0069∗∗∗ 0.0069∗∗∗ 0.0071∗∗∗ 0.0069∗∗∗

(0.0015) (0.0007) (0.0007) (0.0006) (0.0004)
λD -0.1470i -0.0870i -0.1235i 0.1086i 0.0519i

λWD 0.0235∗ 0.0186∗∗ 0.0156∗∗∗ 0.0153∗∗ 0.0145∗∗∗

(0.0139) (0.0087) (0.0037) (0.0071) (0.0031)
λX -0.0017i -0.0019i -0.0015i -0.0027i -0.0023i

λXD -0.0030i -0.0022i -0.0019i -0.0028i -0.0027i

a 0.6799 0.3451 0.4072 0.1714 0.4094
(0.4869) (1.0155) (0.9192) (0.6534) (1.7059)

RMSPE 22.1 [0.29] 20.7 [0.27] 13.0 [0.21] 21.6 [0.30] 24.5 [0.34]
C. b = −0.04
λW 0.0068∗∗∗ 0.0071∗∗∗ 0.0069∗∗∗ 0.0067∗∗∗ 0.0066∗∗∗

(0.0017) (0.0006) (0.0009) (0.0006) (0.0007)
λD 0.0388i -0.2720i -0.2940i -0.2000i -0.2915i

λWD 0.0131 0.0272∗∗∗ 0.0231∗∗∗ 0.0210∗∗∗ 0.0237∗∗∗

(0.0199) (0.0080) (0.0031) (0.0058) (0.0079)
λX -0.0029i -0.0020i -0.0006i -0.0017i -0.0009i

λXD -0.0029i -0.0022i -0.0015i -0.0017i -0.0014i

a 0.1288 0.2422 0.5741 0.1025 0.3860
(0.2882) (0.7454) (0.7205) (1.0316) (0.7472)

RMSPE 23.9 [0.32] 21.1 [0.28] 9.2 [0.15] 21.1 [0.30] 21.0 [0.30]

The table shows risk premium estimates for the GDA5 model when the disappointing event is defined as

Dt =
{
rW,t − aσW

σX
∆σ2

W,t < b
}

. The value of b varies across panels. The test portfolios are the same as in

Table 4 of the main text. The premiums are estimated using GMM. Standard errors are in parenthesis.
Values with the superscript i are not estimated, but are imposed. RMSPE is the root-mean-squared pricing
error of the model in basis points (bps) per month and the RMSPE to root-mean-squared returns ratio is
reported in brackets.
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Table A.8: Risk premiums for the GDA5 using alternative volatility measures

Stocks 25 S×BM 25 S×Mom 6 S×BM 6 S×Mom
Options 54 6 6
Currencies 6 6

A. Option implied volatility (VIX)
λW 0.0081∗∗∗ 0.0079∗∗∗ 0.0065∗∗∗ 0.0065∗∗∗ 0.0065∗∗∗

(0.0009) (0.0008) (0.0014) (0.0011) (0.0009)
λD -0.1071i -0.1310i -0.3226i -0.2698i -0.2470i

λWD 0.0152∗ 0.0160∗∗ 0.0209∗∗∗ 0.0207∗ 0.0201∗∗

(0.0083) (0.0076) (0.0063) (0.0111) (0.0089)
λX -0.0010i -0.0012i -0.0005i -0.0008i -0.0009i

λXD -0.0016i -0.0014i -0.0008i -0.0010i -0.0010i

a 1.2625 0.4006 0.4546 0.2778 0.1595
(2.0932) (1.4324) (0.8337) (1.2991) (1.2682)

RMSPE 23.8 [0.30] 23.6 [0.29] 12.6 [0.20] 21.4 [0.30] 20.3 [0.29]
B. Realized volatlity (intra-daily)
λW 0.0058∗∗∗ 0.0065∗∗∗ 0.0063∗∗∗ 0.0067∗∗∗ 0.0064∗∗∗

(0.0012) (0.0007) (0.0010) (0.0004) (0.0007)
λD 0.1079i -0.1728i -0.2112i -0.1944i -0.2820i

λWD 0.0037 0.0170∗ 0.0177∗∗∗ 0.0194∗∗∗ 0.0211∗∗∗

(0.0109) (0.0099) (0.0034) (0.0040) (0.0053)
λX -0.0011i -0.0008i -0.0006i -0.0008i -0.0006i

λXD -0.0010i -0.0009i -0.0008i -0.0011i -0.0008i

a 0.9802 0.2201 0.4378 0.4429 0.3235
(2.2929) (0.6148) (1.8549) (1.1562) (1.1562)

RMSPE 23.7 [0.34] 25.0 [0.36] 12.4 [0.21] 19.6 [0.28] 18.1 [0.25]
C. Model implied volatility (EGARCH)
λW 0.0069∗∗∗ 0.0070∗∗∗ 0.0068∗∗∗ 0.0066∗∗∗ 0.0065∗∗∗

(0.0017) (0.0009) (0.0022) (0.0004) (0.0008)
λD -0.0060i -0.1715i -0.2701i -0.1978i -0.2736i

λWD 0.0155 0.0214∗∗∗ 0.0206∗ 0.0196∗∗∗ 0.0212∗∗∗

(0.0132) (0.0076) (0.0109) (0.0048) (0.0049)
λX -0.0010i -0.0008i -0.0004i -0.0004i -0.0002i

λXD -0.0012i -0.0010i -0.0006i -0.0006i -0.0004i

a 0.8603 0.4252 0.4020 0.2069 0.1105
(0.8198) (0.7559) (2.4298) (1.3322) (0.8260)

RMSPE 20.6 [0.27] 19.7 [0.26] 11.4 [0.18] 20.5 [0.29] 19.3 [0.27]

The table shows risk premium estimates for the GDA5 model when market volatility is measured in different
ways (in panels). The test portfolios are the same as in Table 3 of the main text. The premiums are estimated
using GMM. Standard errors are in parenthesis. Values with the superscript i are not estimated, but are
imposed. RMSPE is the root-mean-squared pricing error of the model in basis points per month and the
RMSPE to root-mean-squared returns ratio is reported in brackets.
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Table A.9: Betas of the option portfolios

Return Betas
E[Re

it] βiW β−iW βiX β−iX

Call, 5% OTM -3.45 0.64 0.26 0.33 0.71
Call, ATM -1.32 0.75 0.36 -0.25 0.35
Call, 5% ITM 1.13 0.80 0.45 -0.78 -0.03

Put, 5% ITM 5.78 0.92 0.76 -2.64 -1.60
Put, ATM 8.99 0.97 0.88 -3.35 -2.13
Put, 5% OTM 16.02 1.01 0.99 -4.13 -2.76

The table presents retunrs and betas of various index option portfolios. The first col-
umn presents the annual average excess return of the portfolios. The rest of the ta-

ble reports the market beta βiW =
Cov(Re

it,rWt)
V ar(rWt)

, the market downside beta β−iW =

Cov(Re
it,rWt|Dt)

V ar(rWt|Dt)
, the volatility beta βiX =

Cov(Re
it,∆σ

2
Wt)

V ar(∆σ2
Wt)

, and the volatility downside beta

β−iX =
Cov(Re

it,∆σ
2
Wt|Dt)

V ar(∆σ2
Wt|Dt)

of the portfolios. The disappointing event is Dt = {rWt < −0.03}.
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Table A.10: Model calibration

A. Endowment parameters B. Preference parameters

µ = 0.15%,
√
ωc (L) = 0.46%,

√
ωc (H) = 1.32%, δ = 0.998, γ = 2.5, ` = 2.33, κ = 0.998

νd = 6.42, ρ = 0.3, pHH = 0.9961, pLL = 0.9989

C. Endowment and asset pricing moments D. Downside event and factor risk premiums

Sample GDA3 GDA5 GDA3 GDA5

E [∆ct] (%) 1.84 1.80 1.80 ψ ∞ 1.5
σ [∆ct] (%) 2.20 2.07 2.07
AC1 (∆ct) 0.48 0.25 0.25 a 0.00 1.38
E [∆dt] (%) 1.05 1.80 1.80 b (%) 0.00 -0.10
σ [∆dt] (%) 13.02 13.29 13.29 Prob (D) (%) 17.43 16.09
AC1 (∆dt) 0.11 0.25 0.25
Corr (∆ct,∆dt) 0.52 0.30 0.30 λW 0.0065 0.0042

λD -0.3494 -0.3010
E [pd] (%) 3.33 2.72 2.89 λWD 0.0038 0.0023
σ [pd] (%) 0.44 0.20 0.11 λX -1.38E-6
E [rf ] (%) 0.57 0.46 0.76 λXD -1.16E-6
σ [rf ] (%) 3.77 0.15 1.55
E [r − rf ] (%) 5.50 8.06 6.61
σ [r − rf ] (%) 20.25 17.65 16.84

The top panels of the table present the parameter values used for the calibration assesment. Panel A
shows the parameters of the endowment dynamics from (A.36), while Panel B presents the values of the
preference parameters. Panel C presents the model implied mean (E), standard deviation (σ), and first
order autocorrelation (AC1) of consumption growth (∆ct) and dividend growth (∆dt), and the first and
second moments of the log price-dividend ratio (pd), log risk-free rate (rf ), and excess log equity return
(r − rf ). The first column presents annualized data counterparts over the period from January 1930 to
December 2012. Finally, Panel D shows the characteristics of the downside event (parameters a and b
from equation (A.4) and the unconditional disappointment probability) and the factor risk premiums
(λ-s), as implied by the GDA model.

32



Table A.11: Risk premium estimates using individual stocks

GDA3 GDA5 GDA5 GDA5
a = 0 a = 0 a = 0.5 a = 1

λW 0.0054∗∗ 0.0051∗∗ 0.0051∗∗ 0.0052∗∗

(0.0024) (0.0023) (0.0023) (0.0023)
λD -0.2112∗∗ -0.1906∗∗ -0.3249∗∗∗ -0.3561∗∗∗

(0.1017) (0.0957) (0.1228) (0.1240)
λWD 0.0045∗∗∗ 0.0041∗∗ 0.0044∗∗∗ 0.0040∗∗∗

(0.0017) (0.0016) (0.0016) (0.0013)
λX -1.03e-5∗∗∗ -1.03e-5∗∗∗ -1.01e-5∗∗∗

(3.65e-6) (3.76e-6) (3.84e-6)
λXD -3.15e-6∗∗∗ -6.57e-6∗∗∗ -8.31e-6∗∗∗

(9.38e-7) (1.93e-6) (2.47e-6)

The Table presents results of Fama-MacBeth regressions. For each month t ≥ 12 the β-s are calculated using
daily data over the previous 12 months (months t− 11 to t). The dependent variable in the cross-sectional
regression for each month t is the average monthly excess return over the next month (t+ 1). The standard
errors (in parenthesis) are corrected for 12 Newey-West (1987) lags. The sample period is from July, 1963
to December, 2013.
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Figure A.5: Sensitivities of the option portfolios
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The figure shows option sensitivtes, implied by the Black-Scholes formula, of options with different moneyness
(K/S0) levels. The sensitivities are defined by the equations from (A.32) to (A.35). The parameter values
used are S0 = 10, T = 1/12 (one month maturity), 30% annual volatility for the underlying, and a risk-free
rate of zero. The strike price, K, varies along the horizontal axis of each graph.
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Figure A.6: Asset Prices Sensitivity to Disappointment Aversion

A. Mean of risk-free rate B. Volatility of risk-free rate
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G. Mean of equity excess return H. Volatility of equity excess return
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The figure displays model-implied annualized mean and volatility of the risk-free rate in Panels A and
B, loadings of the welfare valuation ratios onto market volatility and their ratio in Panels C and D, and
coefficients that determine the disappointing region in Panels E and F. The equity premium and the equity
volatility are finally shown in Panels G and H. All quantities are plotted against the degree of disappointment
aversion `, and for different values of the elasticity of intertemporal substitution ψ.

39



Figure A.7: Factor Risk Premia Sensitivity to Disappointment Aversion
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The figure displays model-implied factor risk premiums in Panels A to E, and the disappointment probability
in Panel F. All quantities are plotted against the degree of disappointment aversion `, and for different values
of the elasticity of intertemporal substitution ψ. 40


