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1 Response to News Shocks in Drugs Industry

In this part we replicate Table 3 of the main paper, which shows the market reaction to

news shocks, for a sub-sample of firms in the Drugs industry (SIC 283). Intuitively, one

would expect biotech and pharmaceutical stocks to be more news dependent because

usually news about their products and patents have a large impact on their future earn-

ings.

Table 1 presents the results. Interestingly, our results show 2 to 4 times stronger post-

news reaction for this group of firms. However, post-shock return patterns are generally

the same as the case of all news.

2 Alternative Methodology: the Regression Approach

A large body of the literature studying the stock market reaction to price shocks use the

regression method. Some recent examples of this method are in studies by ? and ?. As we

discussed before, we study the market reaction to both news and no-news price shocks.

Empirically, we calculate the price shock at each day, for all firms in our sample. If there

is a news story about a firm in a day, we flag that observation as a news shock, otherwise

we call it a no-news shock. When both news and no-news shocks are present, there are

two alternative ways of running regressions.

First, to run the following regression separately for news and no-news observations.

ACARit+2,t+40 = αi +β1ARetit +β2Sizeit +β3B/Mit +β4MOMit +β5VOLit + εit (1)

i and t are firm and time indices, respectively. The dependent variable, ACARit+2,t+40,

is the average cumulative abnormal return on firm i’s stock for a post-shock period from

day t + 2 to t + 40. On the right-hand side, αi is the firm fixed effect, ARetit is the

abnormal return on day t, and the rest are the controls for firm characteristics that predict

expected returns. The controls are standard, as in ?. They include yearly measures of

firm size (Sizeit), book to market ratio (B/Mit), return momentum for the past 12 months

excluding the most recent month (MOMit), and average daily return volatility for the
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previous month (VOLit).

The variable of interest in this regression is β1. When we run this regression sepa-

rately for no-news, all news, positive news or negative news observations, in each case,

a positive β1 shows drift in returns after the shock and a negative β1 shows reversal. We

interpret the drift pattern in post-shock returns as the under-reaction, and the reversal as

the over-reaction at day 0. This becomes more intuitive where we study news shocks.

Suppose there is a change in fundamental value of the firm with each news story. When

the news becomes public (day 0), the stock market reacts to the new information and

move the price in the appropriate direction. Now if the price change is exactly of a mag-

nitude that leaves the price at the fundamental value (correct reaction), we expect to see

no specific pattern for returns in the following days. Whereas, if the magnitude of the

price change on day 0 is smaller than the correct reaction (under-reaction), we expect to

see the price moving in the same direction (drift) in the following days. Reciprocally, if the

magnitude of the price change at day 0 is larger than the correct reaction (over-reaction),

market corrects itself in the following days and pushes back the price to the fundamental

value, so reversal occurs.

There is ample evidence suggesting the differences between small and large firms in

capital markets, regarding their information environment, limits to arbitrage, etc. There-

fore, it is reasonable to investigate relation of post-news ACARs and day 0 abnormal

returns for firms of different size. This can be captured by adding an interaction term of

size and day 0 abnormal return to the regression. So, in addition to (1), we also estimate

the following regression.

ACARit+2,t+40 =αi + β1ARetit + β2ARetit ∗ Sizeit + β3Sizeit + β4B/Mit

+ β5MOMit + β6VOLit + εit

(2)

In this setting, β1 shows the average effect for all stocks and β2 shows the additional

effect for large stocks.

The second approach to run regressions is to pool all news and no-news observations.

By allowing a dummy variable to identify news observations, the average effect for all
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observations and also the marginal effect for news shocks are estimated in the following

specification.

ACARit+2,t+40 =αi + β1ARetit + β2Newsit ∗ARetit + β3Newsit + β4Sizeit

+ β5B/Mit + β6MOMit + β7VOLit + εit

(3)

All variables are defined same as before. The only additional variable is Newsit, a bi-

variate dummy variable, which takes 0 if there is no news about firm i on day t and 1

otherwise. β1 shows the drift or reversal pattern for no-news observations and β1 and β2

together show the patterns for news observations.

Furthermore, instead of a single dummy variable for news, we are able to separately

estimate the patterns for positive and negative news by allowing separate dummies for

each group.

ACARit+2,t+40 =αi + β1ARetit + β2PosNewsit ∗ARetit + β3PosNewsit

+ β4NegNewsit ∗ARetit + β5NegNewsit + β6Sizeit

+ β7B/Mit + β8MOMit + β9VOLit + εit

(4)

Similar to the previous setting β1 shows the average post-shock pattern for no news ob-

servations. Taking β1 into account along with β2 and β3, one can infer the patterns for

positive and negative news, respectively.

3 Shock Absorption Patterns Using the Regression Approach

Table 2 shows the results for specifications (1) and (2), i.e. studying shock absorption

patterns separately for various groups of observations. The first two columns show the

results if we pool all news observations, and columns 5-7 show the results for all, positive

and negative no-news shocks. The negative estimated coefficient on the interaction of

day 0 abnormal return (ARet0) and size in column 1, and on ARet0 in column 2, along

with the consistently negative coefficient on ARet0 in columns 5-7 for all no-news groups

confirm results form the previous studies, i.e. smaller short term overreaction to news
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and larger short term overreaction to no-news (? and ?). Results for the no-news case is

extensively replicated and discussed in the literature, however we believe this is not the

whole picture about the news observations.

On one hand, if we include the interaction term of ARet0 and Size as in column 1 of

table 2, the coefficient on ARet0 changes its sign to positive and lose its significance. This

means as a result of pooling all news observations together, for an average firm we esti-

mate no link between ARet0 and ACAR2,40, and only observe a much lower overreaction

for large firms, captured by the negative coefficient on the interaction term.

On the other hand, if we distinguish positive and negative news observations, columns

3 and 4 of table 2 respectively, we observe significantly different patterns. We label a news

observation to be a positive (negative) news if the abnormal return on the news date is

positive (negative). For negative news, for an average firm, we observe a significant drift

pattern after the news date, due to the positive sign of the coefficient on ARet0; however,

for positive news there is reversal, although it is not statistically significant. This means

for an average firm, the stock market under-reacts to bad news and over-reacts to good

news. Notice that taking both β1 and β2 into account, results suggest that both patterns

are alleviated for large firms. We elaborate this point and explain that this finding is

consistent with the model predictions later when we discuss arbitrageurs’ tests.

Table 3 shows the results for the pooling regressions. The results of the specification

3 and 4 are in the first two columns; column 3 and 4 show the results for running the

same regressions using raw returns instead of abnormal returns. Due to the statistically

significant negative coefficients shown in the first row (β1) of the table, in all cases reversal

patterns for no-news observations is identified. Running standard pooling regressions in

column 1 or using raw returns in column 3, as in ?, we get similar results as previously

shown in the literature, i.e. large reversals after no-news shocks and smaller reversals

following news shocks. However, in columns 2 and 4, when we distinguish positive and

negative news we observe different patterns. In this setting, taking coefficient estimates

onARetit together with the signed interaction term Pos/NegNews∗ARetit suggest post-

news reversal for positive news and almost no link between post-news returns and day

0 returns for negative news. Nevertheless, an important point is the significant negative
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coefficients on dummy variables for news and positive/negative news.

The latter point together with inconsistent results from the other two regression set-

tings using literally the same data set, suggest the inability of regression approach to show

all the patterns, even though it is heavily used in the literature for this purpose. As we

discussed in methodology section, a potential source of the problem might be due to the

data characteristics. Although, there is a large variation in day 0 abnormal returns, we do

not observe as much variation in the post-shock ACARs in each group of observations. In

other words, post-news ACARs are fairly similar within each group of positive news and

negative news, but different across groups. Hence, much of the action could be captured

by the dummy variables for positive and negative news and there is not much variation

left to be picked by the interaction term.

4 Comparing the Two Methodologies

Although we show the results using both methodologies, there are a number of advan-

tages for the event studies approach. First and foremost, is that in the event studies ap-

proach we are able to test for significance of ACARs particularly in different periods and

for various groups. This point becomes more prominent if we expect to see different

shock absorption patterns under different situations, for instance for positive versus neg-

ative shocks. One might think that by adding proper control variables, e.g. in this case

dummies for positive and negative shocks, regression coefficients could potentially cap-

ture the patterns. However, for the specific goal of our study, which is to emphasize the

differences between shock absorption patterns of positive and negative news, regression

setting is not able to depict a “complete" picture of the underlying story. One reason for

this failure is due to some of the data characteristics. For instance, as a matter of fact the

magnitude and sign of post-news ACARs for negative and positive news stories are very

similar. Also, among observations of each group (positive or negative news), there is not

much variation in post-news ACARs. Therefore, much of the action is captured by dum-

mies for positive and negative news in the regressions and there is not much variety left

to be captured by the interaction term of the dummy and day 0 abnormal return. Nev-
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ertheless, we know that the important phenomenon to look for is the link between day

0 abnormal returns and the post-shock ACARs in different situations and comparison of

these links across situations. As we show in results, the task can be done more clearly

using event studies.

Another benefit of the event study methodology is that we can easily sort our data

on different characteristics into deciles or quintiles and compare the shock absorption

patterns in different groups. This feature is in particular very useful in the last section of

our study for testing hypotheses.

5 Monthly Intermediary Capital Ratio

In this section we repeat the arbitrageurs’ test that uses intermediary capital ratio growth

rate as a proxy for intensity of arbitrage activity in the market. ? provide the data on

intermediary capital ratio at both quarterly and monthly frequencies. To compute the

equity capital ratio they need market value of equity and book value of debt for each

intermediary. They get the data from CRSP-Compustat merged data set for US firms and

from Datastream for non-US firms. In the quarterly version of the data, both parts are

evaluated at the quarterly frequency. In the monthly version, market value of equity is

evaluated at the monthly frequency but book value of debt is at the quarterly frequency.

Table 4 shows the results when we repeat the test with monthly data (comparable

results using quarterly data are shown in Table 9 in the main paper). Results are qualita-

tively similar to what we found in the baseline version of the test. As we move from the

first to the fifth quintile (low to high arbitrage activity), post-shock returns lose economic

and statistic significance in response to both positive and negative shocks.

6 Textual Analysis: Model Details

In this section we present more details on the parameters and structure of the models used

for categorizing the news sample.1 Appendix A of the paper presents the four main steps

1Model explanations presented here are partly adopted from RapidMiner tutorials.
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of the categorization process: (1) Creating a training sample; (2) Processing articles in the

training sample; (3) Creating, training, and validating the categorization model using the

training sample; (4) Using the model to categorize the original sample. In the third step,

we compare the performance of three different models of categorization and pick Naive

Bayes as the baseline model. Table A.1 of the paper shows the performance comparison.

The k-Nearest Neighbor (k-NN) algorithm is based on comparing an unknown unit

of the sample–a news story, in our case–with the k training units which are the nearest

neighbors of the unknown unit. The first step of the application of the k-NN algorithm on

a new unit is to find the k closest training examples. "Closeness" is defined in terms of a

distance in the n-dimensional space, defined by the n attributes in the training sample. In

our case, the attributes are elements of the word vectors created from the training sample.

Different types of measures–such as, numerical, nominal, Bergmann Divergence, etc.–

can be used. Also, different metrics, such as the Euclidean distance, can be used to cal-

culate the distance between the unknown unit and the training examples. The structure

and parameters of the k-NN models used in our study is shown in the table below.

Model: k-NN

Structure: k= 1 or 3
Measure types: Numerical measures
Numerical measure: Cosine Similarity

The next operator that we use, learns a model by means of a feed-forward neural

network trained by a back propagation algorithm. Back propagation algorithm is a su-

pervised learning method which can be divided into two phases: propagation and weight

update. The two phases are repeated until the performance of the network is good

enough. In back propagation algorithms, the output values are compared with the correct

answer to compute the value of some predefined error-function. By various techniques,

the error is then fed back through the network. Using this information, the algorithm

adjusts the weights of each connection in order to reduce the value of the error function

by some small amount. After repeating this process for a sufficiently large number of

training cycles, the network will usually converge to some state where the error of the

calculations is small. In this case, one would say that the network has learned a certain
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target function.

We can define the structure of the neural network with the number of hidden layers.

In our case, size of the hidden layer is calculated from the number of attributes of the

input example set, which is known after creating word vectors of the training sample.

The layer size will be set to (number of attributes + number of classes) / 2 + 1, in which,

the attributes are elements of the word vectors created from the training sample and there

are nine classes as shown in Table 4 of the paper.

Next we must specify the number of training cycles used for the neural network train-

ing. In back-propagation the output values are compared with the correct answer to com-

pute the value of some predefined error-function. The error is then fed back through the

network. Using this information, the algorithm adjusts the weights of each connection

in order to reduce the value of the error function by some small amount. This process is

repeated n number of times. We set n=250.

The learning rate, which determines how much we change the weights at each step, is

set to 0.3. The momentum, which simply adds a fraction of the previous weight update

to the current one and helps with preventing local maxima, is set to 0.2. Also, we set the

program to shuffle the training sample before learning. Finally, the Neural Net operator

uses a usual sigmoid function as the activation function. Therefore, the value range of

the attributes are normalized to -1 and +1. The structure and parameters of the Neural

Network model is summarized in the table below.

Model: Neural Network

Structure: Layers: 3 (input, hidden, output)
Size of hidden layer = (# attributes + # classes) / 2 + 1
Training cycles = 250
Error epsilon = 1.0e-5
Learning rate = 0.3
Momentum = 0.2
Shuffle training sample
Normalize the value range of attributes
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7 Model

In this section we present a stylized model that helps clarify how interactions of different

groups of investors in response to shocks, generates predictable post-shock returns. At

the end we compare model implications to the empirical findings in previous sections.

Our model builds on the market structure of ??. We use this framework because it is a

simple model in which stock prices reflect the interactions among various types of agents.

In the model, each day agents submit their demand for a firm’s stock, and there is also a

unit supply of the stock. At the end of each day market clears and the price is determined.

Given this structure, it is easy to implement financial frictions pertaining to each agent as

a direct change in their demand functions. Although the market structure in our model

resembles that of Shleifer and Vishny, the market participants, their characteristics, and

also the frictions in our model are different. In our model, we assume there are three

types of traders: retail investors, arbitrageurs, and liquidity traders.

Retail investors have attention bias, in the sense that they do not trade unless their

attention is grabbed. They trade only in response to positive news and they may not fully

internalized the aggregate effects of their individual trades. So their trade may impose

mispricing when there is a news shock. Empirical evidence supporting these assumptions

are discussed in Section 4 of the main paper.

Arbitrageurs are rational and have limited capital in the short-run. They can buy,

sell or short sell stocks to maximize their profits. We assume that short selling requires

arbitrageurs to deposit the value of the trade in margin accounts, thus limited capital

limits them on both buying and short selling. In the long-run they have access to sufficient

capital to remove all mispricings. So the model can be viewed as reflecting limits to

arbitrage (?) and slow moving capital (?).

Liquidity traders have an inelastic demand for the stock. The real world counterpart of

this group are households who invest a certain part of their income in a stock portfolio, for

instance in their retirement accounts. This investment happens regardless of the current

market conditions. In reality, much of this type of demand might be invested through

mutual funds and pension funds, but for simplicity we abstract from intermediaries and

9



assume that the liquidity traders directly invest in the stock market.

In our model we assume that when there is a good news, all three types of traders

participate in the market, but in the case of bad news retail investors are absent and only

liquidity traders and arbitrageurs trade the stocks. To justify this assumption note that

in the model, demand of the liquidity traders reflects liquidity demands of all types of

traders. So indeed the behavior of retail investors in the model is normalized to their liq-

uidity demands. This allows us to have retail investors who do not trade on the bad news

days, because their liquidity demand is already reflected. Given the empirical evidence

that short selling is not pervasive among retail investors, it is fairly reasonable to assume

that they have no other incentive to trade in response to bad news.

7.1 Model Setup

Shares of a firm are being traded at the market. There are four trading days. At each

date, there is a stock price that can be different from its fundamental value. We call the

difference between the stock price and the fundamental value a mispricing. At date 0, we

assume that there is no mispricing and both the fundamental value and the stock price of

the firm areV . When there is no news, the only demand for the stocks is liquidity demand.

At the beginning of date 1, there is a news story about a shock to the fundamental value

of the firm (∆V). Denote the true fundamental value at the news date by V ′ ≡ V + ∆V .

We call a positive shock to the fundamental value (∆V > 0) a good news and a negative

shock (∆V < 0) a bad news.

Liquidity traders. At date 0, their demand is V , which sets the stock price given the

unit supply of stocks. Their demand is not affected by ∆V and is equal to V , even after

the news becomes public. This is the inelasticity of liquidity demand that we discussed

before. Therefore, liquidity traders’ stock holding at date t is HLt =
V

pt
.

Arbitrageurs. Arbitrageurs are risk neutral rational agents and choose their trading

strategy to maximize their profit. They precisely assess ∆V and decide about their initial

trade accordingly. At date 1 and 2, arbitrageurs have limited aggregate capital of C1

and C2, respectively. But, there is unlimited arbitrage capital at date 3 that eliminates

10



mispricings. Thus the stock price at date 3 equals V ′. Without loss of generality, we

assume a representative arbitrageur who owns the aggregate arbitrage capital. Let At be

the arbitrageur’s endogenous demand for the stock. Therefore her stock holding at date t

is HAt =
At

pt
.

Retail investors. We assume a continuum of retail investors with limited attention

and they trade only if an attention grabbing event attracts them. There are two sources

that attract retail investors. At date 1, it is the news that attracts them. Measure κ > 1

of retail investors trade in reaction to the news shock. These retail investors who trade

at the news date hold their stocks until the terminal date. However at subsequent dates

(when there is no news) it is the previous day’s price change that draws their attention. 2

Meaning that of the retail investors who miss the news (because they are busy), the date

1 price jump attracts measure 1, and they trade at date 2. We assume that date 2 trade

of this group is in the same direction as the price change at date 1. We also assume that

news grabs more attention than a price jump because of media coverage, etc., thus the

mass of retail investors who trade at the news date (measure κ) is larger than the mass

who trade subsequently (measure 1). Importantly, retail investors trade only in response

to good news. We discussed this point earlier in this section. Figure 1 illustrates the time

line.

Figure 1: Time line

Fundamental value
and stock price are V .

t = 0

News becomes public.
Arbitrageurs trade to
maximize overall profits.
In the case of good news,
measure κ of retail traders
receive the news and buy
stocks. In the case of bad
news, retail invesotrs do
not trade.

t = 1

In the case of good
news, measure 1 of
retail traders buy
stock shares. Ar-
bitrageurs trade to
maximize overall
profits.

t = 2

There is enough aggre-
gate arbitrage capital to
eliminate mispriceings.
Stock price is V ′.

t = 3

Retail investors are not able to assess ∆V precisely, but their reaction to the news is in

2? document this behavior for retail investors.
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the same direction as ∆V . This is consistent with retail investors being atomic agents who

submit their demands individually and underestimate their aggregate price impact. This

effect is captured by a demand shock that increases the retail demand above the impact

of the change in the fundamental value. Dollar value of retail investors’ demand at each

date is ∆V + St, where St is the demand shock at date t, and is defined as

St = β κ ∆Vt + β ∆pt−1 (5)

Where β determines the magnitude of the retail demand’s deviation from fundamental

values, ∆Vt is the shock to the fundamental value, and ∆pt−1 = pt−1 − pt−2 is the pre-

vious day’s price change. The first expression on the right-hand side of (5) captures the

demand shock to measure κ of retail investors whose attention is grabbed and trade at

the news date. Notice that the first expression is only non-zero on date 1, because there is

no shock to the fundamental value on other dates. The second term is zero on the news

date because there is no price change before the news. However, it captures the demand

shock to measure 1 of retail investors who miss the news at date 1, but the date 1 price

jump attracts them and they trade at date 2.

Note that a positive β implies overreaction and a negative β implies underreaction to

shocks by retail investors. Empirical evidence seem to support the idea that high retail

trading leads to overreaction (??), so we consider β ∈ [0, 1]. A larger β represents a larger

retail investors’ attention bias, which leads to larger demand shocks. Also, a larger shock

to the fundamental value or a larger price jump results in larger demand shocks. Using

equation (5), the retail investors’ demand shock at dates 1 and 2 are S1 = κ β × (V ′ − V)

and S2 = β×(p1−V). Having their demand, the quantity of retail investors’ asset holding

at date t is HRt =
∆V + St
pt

.

In our model, liquidity traders and retail investors are non-optimizing agents. That is

their aggregate demand is either inelastic (in the case of liquidity traders) or is a determin-

istic function of the model variables (in the case of retail investors). The only agent who

optimizes trading strategies is the arbitrageur. Therefore, an equilibrium in this model is

defined as the arbitrageur’s optimal policy (stock demand) and a stock price on each day.
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Market Clearing. The price is determined by the market clearing condition that equates

supply and demand of shares. At each date, we assume that there is a constant unit sup-

ply of shares in the market. The market clearing condition at date 1 is

HL1 +HR1 +HA1 = 1 (6)

The market clearing condition at date 2 depends on the arbitrageur’s strategy at date

1 because she can trade her stock holdings from date 1. If the arbitrageur buys at date 1,

i.e. A1B ∈ (0,C1], she could supply her date 1 stock holdings at date 2. But this does not

happen if she sells at date 1, i.e. A1S ∈ [−C1, 0]. Hence, date 2 market clearing conditions

are different under the buying strategy, and the selling strategy.

The arbitrageur chooses her trades at each date to maximize net profits from day 1 to 3,

subject to capital constraints and a participation constraint. To save notation and without

loss of generality, we assume equal arbitrage capital at times 1 and 2: C1 = C2 = C. So

the arbitrageur’s problem is

Max
A1,A2

Π(A1,A2;p1,p2)

s.t. − C 6 A1 6 C (date 1 capital const.)

φ(A1;C) 6 A2 6 φ̄(A1;C) (date 2 capital const.)

Π(A∗1,A∗2) > 0 (participation const.)

Π(.) is the arbitrageur’s net profit from trades, which obviously depends on her demand

for stocks and prices. Note that the arbitrageur closes all trading positions at date 3, so her

trade at the terminal date is determined by her trades at the first two periods. The date

2 capital constraint depends on date 1 trade; for instance if the arbitrageur simply does

not trade on the first day, she has 2C available capital at date 2. Finally, the participation

constraint ensures that there is an overall gain to the trades, otherwise the arbitrageur just

avoids trading.

Solving for the arbitrageur’s optimal strategy and the equilibrium prices precisely

requires the distinction between positive shocks and negative shocks due to the time 2
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market clearing, and the presence of retail investors who are only active in response to

positive shocks.

7.2 Analysis of Positive News Shocks

All three groups of investors trade in response to a positive news. The arbitrageur faces a

trade-off in choosing her trading strategy at date 1. She has no control on retail investors’

date 1 trade in response to news. However, because her date 1 trade has a price impact,

her choice affects date 2 trades of the retail investors. In the sense that if she buys stocks

at date 1, this increases date 1 price. The date 1 price jump is the source of attracting retail

investors to trade at date 2. Therefore, although under buying strategy she buys at a

higher price at date 1, it will increase retail investors’ demand at date 2. This in turn helps

the arbitrageur to sell at a higher date 2 price. This strategy resembles bubble riding. On

the other hand, selling strategy at date 1 helps the arbitrageur to sell at medium prices at

both dates. So it is not immediately clear which strategy dominates the other one. The

following proposition sketches the arbitrageur’s optimal trading strategy.

Proposition 7.1 In response to a positive news, the arbitrageur’s optimal strategy is to trade

against the mispricing by adopting a selling strategy with A∗1 = −C, and A∗2 = −2C + C
p∗2
p∗1

, if

the arbitrage capital is limited (C ∈ [0,C∗]) and retail investors have attention bias (β ∈ [β∗, β̂]),

where C∗, β∗, and β̂ are defined in Equations (21), (14), and (19), respectively.

Proof See Appendix A.1.

The intuition is that if the attention bias is too large (β > β̂), it makes buying strategies

relatively more attractive. The reason is that larger values of β incentivize the bubble

riding behavior, that is to buy at date 1 in order to attract more retail investors tomorrow,

which allows the arbitrageur to sell at a higher price at date 2. But for moderate attention

bias the arbitrageur’s optimal strategy is to trade against the mispricing, not riding a

bubble. So the arbitrageur sells the stocks on date 1 and 2, but because of the capital

constraints she cannot remove all the mispricing at these dates.
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Having the optimal strategies, the equilibrium prices at date 1 and 2 in response to a

positive shock are determined:

p∗1 = V ′ + βκ ∆V − C (7)

p∗2 =

(
V ′ − βV − 2C+ β(V ′ + βκ ∆V − C)

)
(V ′ + βκ ∆V − C)

V ′ + βκ ∆V − 2C
(8)

Hence, we can look at the post-shock price patterns in equilibrium:

Corollary 7.2 In response to a positive news at date 1:

1. The stock market overreacts at the news day, that is p∗1 > V ′.

2. The mispricing declines over time (i.e. no bubble riding), that is p∗1 > p∗2 > V ′.

3. The price decline is steeper at date 2 compared to date 3, that is p∗1 − p∗2 > p∗2 − V ′.

Proof See Appendix A.3.

Corollary 7.2 shows the predicted equilibrium price patterns under the model as-

sumptions. The first part shows that the model predicts that the stock market overreacts

to good news on the news day. The second part shows that the largest mispricing occurs

at the news date. The price declines at date 2 and finally at date 3 it is equal to the fun-

damental value. The third part predicts that most of the price correction occurs at date 2

and a smaller part is left for date 3. That is the price graph has a steeper slope between

date 1 and 2 than between date 2 and 3. All of these predictions are consistent with our

empirical findings in Tables ?? and ??. There we documented overreaction to good news

on the news day, followed by gradual removal of mispricings. Also, comparing ACARs

for the first 10 days after the positive shocks, to ACARs over days 11 to 40 confirms the

steeper price corrections in the earlier post-shock days.

Corollary 7.3 Larger attention bias in individual investors results in larger overreaction to good

news, that is larger mispricings at dates 1 and 2:
∂p∗1
∂β

> 0 and
∂p∗2
∂β

> 0.

Proof See Appendix A.4.
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Corollary 7.3 shows the impact ofβ on price patterns. We definedβ as determining the

extent that the aggregate demand of attention biased retail investors exceeds the rational

demand in response to positive news. So the more retail investors trade in response to a

shock the higher the effective β will be. The model prediction with respect to β is also in

line with our findings in the data. In the retail investors’ tests we found that more retail

trading activity leads to more overreaction to good news.

Corollary 7.4 Larger arbitrage capital results in smaller overreaction to good news at date 1, that

is
∂p∗1
∂C

< 0.

Proof Obvious.

Corollary 7.4 predicts the impact of arbitrage capital on price patterns. This prediction

is also supported by our empirical findings in the arbitrageur’s tests. We found that in

situations where the effective arbitrage capital is small, overreaction to positive news is

significantly stronger.

7.3 Analysis of Negative News Shocks

There are two main differences between the analysis of positive and negative news shocks.

The obvious one is that in the case of bad news, by definition, the shock to the fundamen-

tal value is negative, i.e. ∆V < 0. But the more important difference is that retail investors

do not actively trade in response to the negative shocks.

The arbitrageur is free to buy or sell stocks to maximize overall profits from the trade.

The following proposition determines the optimal strategy for the arbitrageur in response

to bad news.

Proposition 7.5 In response to a negative news, the arbitrageur’s optimal strategy is to trade

against the mispricing by adopting a selling strategy with A∗1 = A∗2 = −C, if the arbitrage capital

is limited: C ∈
[
0,min{V

2
,−∆V}

]
.

Proof See Appendix A.5.
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The intuition of negative news cases is relatively simpler, mainly because retail in-

vestors do not participate in the market. The liquidity demand is inelastic with respect to

the news. So the arbitrageur sells the stock that moves the price closer to the new funda-

mental value. However, limited arbitrage capital prevents the arbitrageur to remove all

the mispricing at dates 1 and 2.

Having the optimal strategies, the equilibrium prices in response to a negative shock

can be computed as p∗1 = p∗2 = V − C. It is easy to observe the price patterns and the

impact of arbitrage capital on prices:

Corollary 7.6 In response to a negative news at date 1:

1. The stock market underreacts, that is p∗1 = p∗2 > V
′.

2. Larger arbitrage capital results in smaller under-reaction to bad news, that is a smaller

mispricing at dates 1 and 2:
∂p∗1
∂C

=
∂p∗2
∂C

< 0.

Proof Obvious.

The predicted results in Corollary 7.6 are again consistent with our empirical findings.

In Tables ?? and ?? we found that the stock market underreacts to negative news shocks.

That is an initial negative price shock, which is followed by even more negative price

drifts. Also, we showed in the arbitrageur’s tests that when there is abundant arbitrage

capital there is virtually no underreaction to negative news, and as the arbitrage capital

shrinks the underreaction patterns become stronger.

Note that corollaries 7.4 and 7.6 underscore the importance of arbitrage capital in fi-

nancial markets. Part of what took place during the financial crisis of 2008-2009 appears

to have been a scarcity of arbitrage capital to deal with a great deal of news.3 This scarcity

was driven partly by the arbitrageurs own financial difficulties, and partly by regulatory

pressure for these firms to reduce leverage. From the perspective of the model this ought

3We thank Gerry Hoberg for suggesting that our model can provide an interpretation of what took place
during the financial crisis. There was a great deal of news to absorb, so the retail traders were active. At
the same time arbitrage capital was being reduced, so the pricing was less tightly tied to true values than
usual.
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to have produced more predictable stock price patterns, and hence average prices that

were further from the true asset values.

7.4 Analysis of No-News shocks

So far we have discussed the price shocks caused by news providing information about a

change in the fundamental value of the firm. However, often price shocks are not accom-

panied by news, the case that we call no-news shocks. In these situations the price shock

is due to random fluctuations in the supply or demand of the shares. We use the same

market structure to study market reaction to these shocks.

To be consistent with the previous analysis, we assume a unit supply of shares at all

dates, and that the no-news price shocks are caused by an exogenous demand shock to

liquidity traders at date 1. Assume that the demand shock changes the liquidity traders’

demand from V to V ′ at date 1, but their demand is equal to V on all other days. Since

this demand shock is exogenous, the arbitrageur does not know about that until after day

1 settlement when the price jump is observed. Thus, in this case the arbitrageur does not

trade at date 1. Retail investors are also not present at date 1 due to the lack of news

or any other source of attraction. So date 1 price is p∗1 = V ′, which is different from the

fundamental value V .

At date 2, the previous day’s price jump attracts retail investor’s attention, but induce

retail trade only if the initial price jump is positive. The arbitrageur chooses date 2 trade

to maximize the overall profit, knowing that there will be no mispricing at the terminal

date.

Given this simple setting, the arbitrageur’s optimal choice at date 2 is straightforward.

In case of negative no-news shocks, the original source of mispricing (the liquidity shock)

goes away, so the price will be back to fundamental value without arbitrageur’s action. In

the case of positive no-news shocks, attracted retail trades are the new source of mispric-

ing. So the arbitrageur trades to make profit out of the mispricing. If the arbitrage capital

is limited and the attention bias is not excessively large, the arbitrageur trades against the

mispring, i.e. sells the stock and avoids bubble riding. Arbitrageur’s optimal strategy
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and price implications of no-news shocks are discussed more formally in the following

Corollary.

Corollary 7.7 Both positive and negative no-news price shocks are reversed in subsequent days.

In response to positive no-news shocks, the arbitrageur’s optimal strategy is to trade against the

mispricing, if arbitrage capital is limited: C ∈
[
0,β

∆V

2

]
.

Proof See Appendix A.7.

Model predictions of the stock market response to no-news shocks are consistent with

our empirical findings in Table ??, where we documented the well-known reversal after

no-news shocks. Here we showed that in addition to market responses to news shocks,

this can also be naturally explained by considering interactions of different groups of

investors.
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Table 1: Drugs industry (SIC 283) analysis
This table shows the results of the event study analysis for the sub-sample of the drugs industry (SIC 283).
Panel A shows the results for the comprehensive analysis of all news, and the separated analyses of the
negative and positive sub-samples. Columns show the abnormal return on the news date (ARet0), and the
average cumulative abnormal returns over the period from t1 to t2 days after the news date (ACAR[t1,t2]).
To calculate abnormal returns, the benchmark is the average return of all matched CRSP firms on a triple-
sort into deciles of size, B/M and momentum. All returns are calculated in basis points. In panel B, negative
and positive observations are distinguished according to the sign of the ARet0. Observations of each sign
are separately sorted into quintiles based on the ARet0. t-statistics are shown in parentheses. The *, ** and
*** symbols denote statistical significance at the 10%, 5% and 1% levels.

Panel A: ACAR

Shock Obs. ARet0 [1,21] [1,63] [2,21] [2,63]

All news 1437 -12.17** -3.54*** -2.95*** -3.48*** -2.89***
(-1.98) (-3.91) (-4.69) (-3.81) (-4.58)

Negative news - 703 -169.21*** -3.16** -1.96** -3.12** -1.92**
(-21.83) (-2.29) (-2.08) (-2.30) (-2.04)

Positive news + 734 138.24*** -3.90*** -3.85*** -3.82*** -3.78***
(26.62) (-3.24) (-4.55) (-3.10) (-4.44)

Panel B: sort on ARet0

Q1 (Largest Negative) - 141 -458.38*** -1.08 -0.06 -0.87 -0.17
(-18.21) (-0.28) (-0.03) (-0.24) (-0.07)

Q2 - 140 -188.53*** -5.16* -2.91 -5.08* -2.70
(-82.39) (-1.72) (-1.37) (-1.67) (-1.25)

Q3 - 141 -115.17*** 1.38 1.29 0.20 0.87
(-82.11) (0.51) (0.65) (0.08) (0.45)

Q4 - 140 -62.73*** -1.06 -0.95 -0.74 -0.88
(-60.75) (-0.39) (-0.52) (-0.29) (-0.49)

Q5 (Smallest Negative) - 141 -20.61*** -9.13*** -6.46*** -8.53*** -6.08***
(-21.08) (-3.08) (-3.11) (-2.84) (-2.92)

Q1 (Smallest Positive) + 147 15.09*** -5.13** -3.65** -5.61** -3.72**
(19.57) (-2.09) (-1.98) (-2.30) (-2.04)

Q2 + 147 51.57*** -4.80** -4.93*** -3.67 -4.55***
(53.31) (-2.22) (-2.96) (-1.59) (-2.71)

Q3 + 146 97.65*** -3.22 -3.41** -3.49 -3.67**
(81.24) (-1.13) (-2.02) (-1.22) (-2.17)

Q4 + 147 166.13*** -1.08 -2.17 -0.93 -1.86
(76.45) (-0.39) (-0.95) (-0.32) (-0.81)

Q5 (Largest Positive) + 147 360.45*** -5.18 -5.16** -5.38 -5.16**
(28.64) (-1.55) (-2.49) (-1.55) (-2.46)
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Table 2: Regressions run separately for news and no-news observations using ACAR
Columns 1, 3 and 4 of this table report the coefficient estimates of equation (2), and columns 2 and 5-7 report those of equation (1). Each column
denotes a sub-sample used to estimate the regression. The dependent variable, ACAR2,40, is the average cumulative abnormal return over day 2 to
40 after the shock date. To calculate abnormal returns, the benchmark is the average return of all matched CRSP firms on a triple-sort into deciles
of size, B/M and momentum. The independent variables include the shock date abnormal return (ARetit), firm size (Sizeit), interaction between
abnormal returns and size (ARetit ∗ Sizeit), book to market (B/Mit), annual return momentum (MOMit), and monthly return volatility (VOLit).
All the returns are calculated in percentage points. Heteroskadisticity-robust standard errors are shown in parentheses. The *, ** and *** symbols
denote statistical significance at the 10%, 5% and 1% levels.

All News Pos News Neg News All No-News Pos No-News Neg No-News

(1) (2) (3) (4) (5) (6) (7)
ACAR2,40 ACAR2,40 ACAR2,40 ACAR2,40 ACAR2,40 ACAR2,40 ACAR2,40

ARetit 0.011 -0.003∗ -0.011 0.050∗∗ -0.003∗∗∗ -0.001 -0.004∗∗∗

(0.008) (0.002) (0.011) (0.021) (0.000) (0.000) (0.001)
ARetit ∗ Sizeit -0.001∗ 0.001 -0.005∗∗

(0.001) (0.001) (0.002)
Sizeit 0.002 0.002 0.000 -0.005 -0.008∗∗∗ -0.008∗∗∗ -0.008∗∗

(0.005) (0.005) (0.005) (0.004) (0.002) (0.002) (0.002)
B/Mit 0.002 0.002 0.003 0.003 -0.016∗∗∗ -0.016∗∗∗ -0.016∗∗∗

(0.004) (0.004) (0.007) (0.004) (0.004) (0.004) (0.004)
MOMit 1.288∗∗∗ 1.274∗∗∗ 1.325∗∗∗ 1.492∗∗∗ -1.487 -1.369 -1.562

(0.424) (0.419) (0.406) (0.496) (1.142) (1.077) (1.224)
VOLit 0.585 0.560 0.189 0.338 1.104∗∗∗ 0.821∗∗ 1.245∗∗∗

(0.469) (0.467) (0.545) (0.521) (0.209) (0.197) (0.211)

Firm FE Yes Yes Yes Yes Yes Yes Yes
N 25,875 25,875 12,593 13,282 1,620,078 795,571 824,507
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Table 3: Pooling regressions
Column 1 and 3 of this table report the coefficient estimates of equation (3), and column 2 and 4 report
those of equation (4). The dependent variable in the first two columns is the average cumulative abnor-
mal return over day 2 to 40 after the shock date (ACAR2,40). To calculate abnormal returns, the bench-
mark is the average return of all matched CRSP firms on a triple-sort into deciles of size, B/M and mo-
mentum. In column 3 and 4, the dependent variable is the average raw return over day 2 to 40 after the
shock date (AvgRet2,40). The independent variables include the shock date abnormal return (ARetit), (pos-
itive/negative) news indicator ((Pos/Neg)Newsit), interaction between returns and (positive/negative)
news indicators ((Pos/Neg)Newsit ∗ (ARetit or Retit)) , firm size (Sizeit), book to market (B/Mit), an-
nual return momentum (MOMit), and monthly return volatility (VOLit). All the returns are calculated in
percentage points. Heteroskadisticity-robust standard errors are shown in parentheses. The *, ** and ***
symbols denote statistical significance at the 10%, 5% and 1% levels.

ACAR AvgRet

(1) (2) (3) (4)
ACAR2,40 ACAR2,40 AvgRet2,40 AvgRet2,40

ARetit or Retit -0.003∗∗∗ -0.003∗∗∗ -0.006∗∗∗ -0.006∗∗∗

(0.000) (0.001) (0.001) (0.001)
Newsit ∗ (ARetit or Retit) -0.001 0.003∗∗

(0.002) (0.002)
Newsit -0.017∗∗∗ -0.03∗∗∗

(0.008) (0.010)
PosNewsit ∗ (ARetit or Retit) -0.001 0.001

(0.002) (0.002)
NegNewsit ∗ (ARetit or Retit) -0.001 0.005∗

(0.006) (0.003)
PosNewsit -0.016∗∗ -0.022∗∗

(0.006) (0.009)
NegNewsit -0.020∗∗ -0.026∗∗∗

(0.009) (0.009)
Sizeit -0.008∗∗∗ -0.008∗∗∗ -0.019∗∗∗ -0.019∗∗∗

(0.002) (0.002) (0.002) (0.002)
B/Mit -0.016∗∗∗ -0.016∗∗∗ -0.028∗∗∗ -0.028∗∗∗

(0.004) (0.004) (0.007) (0.007)
MOMit -1.008 -1.008 -0.412 -0.421

(1.083) (1.084) (1.364) (1.381)
VOLit 1.114∗∗∗ 1.113∗∗∗ 2.447∗∗∗ 2.481∗∗∗

(0.205) (0.206) (0.513) (0.523)

Firm FE Yes Yes Yes Yes
N 1,623,203 1,623,203 1,623,203 1,623,203
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Table 4: Availability of arbitrage capital based on intermediary capital ratio (monthly
frequency)
News observations are sorted into quintiles based on aggregate intermediary capital ratio growth rate.
Columns show the abnormal return on the news date (ARet0), and the average cumulative abnormal re-
turns over the period from t1 to t2 days after the news date (ACAR[t1,t2]). To calculate abnormal returns,
the benchmark is the average return of all matched CRSP firms on a triple-sort into deciles of size, B/M
and momentum. All returns are calculated in basis points. Negative and positive observations are dis-
tinguished according to the sign of the ARet0, and reported in the top and the bottom panel, respectively.
t-statistics are shown in parentheses. The *, ** and *** symbols denote statistical significance at the 10%, 5%
and 1% levels.

Sort: ACAR

Cap. ratio growth rate (η∆t ) Shock Obs. ARet0 [1,21] [1,63] [2,21] [2,63]

Q1 (Smallest η∆t ) - 3173 -211.12*** -1.94** -2.19*** -1.77** -2.08***
(-40.47) (-2.26) (-3.43) (-2.05) (-3.23)

Q2 - 3234 -167.41*** -1.01* -0.21 -0.98* -0.18
(-44.82) (-1.74) (-0.45) (-1.67) (-0.39)

Q3 - 3197 -164.99*** -0.45 -2.43*** -0.54 -2.49***
(-37.99) (-0.66) (-5.13) (-0.79) (-5.25)

Q4 - 3138 -158.44*** -0.77 -1.23*** -0.77 -1.22***
(-47.32) (-1.16) (-2.66) (-1.13) (-2.61)

Q5 (Largest η∆t ) - 3158 -186.66*** 1.20 0.08 1.18 0.06
(-44.19) (1.46) (0.14) (1.41) (0.10)

Q5 - Q1 - 24.46*** 3.14*** 2.27*** 2.95** 2.14**
(3.64) (2.64) (2.60) (2.45) (2.44)

Q1 (Smallest η∆t ) + 3052 208.89*** -2.79*** -3.22*** -3.10*** -3.29***
(38.03) (-3.20) (-5.05) (-3.56) (-5.17)

Q2 + 3003 166.38*** -0.82 -0.72* -1.06 -0.79*
(44.71) (-1.22) (-1.72) (-1.54) (-1.65)

Q3 + 3028 166.34*** -2.16*** -2.41*** -2.46*** -2.53***
(39.23) (-3.36) (-5.14) (-3.73) (-5.33)

Q4 + 3035 167.13*** -1.87*** -0.81* -2.04*** -0.85*
(45.92) (-2.89) (-1.70) (-3.12) (-1.77)

Q5 (Largest η∆t ) + 3030 200.15*** -1.34* -1.92*** -1.60* -2.08***
(40.05) (-1.68) (-3.26) (-1.96) (-3.52)

Q5 - Q1 + -8.74 1.45* 1.30** 1.51* 1.2*
(1.17) (1.72) (2.00) (1.76) (1.89)
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A Proofs

A.1 Proof of Proposition 7.1

Proof The arbitrageur knows that at date 3 there is no mispricing in the stock market, so
she sells as much as it is feasible for her so long as the price at date 2 is above the new
fundamental value, V ′. Therefore, arbitrageur’s demand at date 2 is equal to the negative
of her available capital at date 2, that is

A2 = −
[
C2 +

(
C1 − |A1|

)
+HA1 × (p2 − p1)

]
where C2 is the new capital available to the arbitrageur at date 2,

(
C1− |A1|

)
is the amount

of capital left from date 1, and HA1 × (p2 − p1) is profit (loss) from her stock holdings at
date 1. The arbitrageur’s demand at date 1, A1, has opposite signs if the arbitrageur buys
or sells stocks. Therefore, A2B and A2S, the arbitrageur’s date 2 demand under buying
and selling strategies, respectively, are{

A2B = −[C1 + C2 +H
A
1Bp2B − 2HA1Bp1B]

A2S = −[C1 + C2 +H
A
1Sp2S]

(9)

Date 2 market clearing conditions in the two cases are{
HL2 +HR2 +HA2 = 1 +HA1B if buying strategy at t = 1

HL2 +HR2 +HA2 = 1 if selling strategy at t = 1
(10)

Substituting the stock holdings (Hit) for all agents into date 1 market clearing condition
(Equation 6), date 1 stock price is

p1 = V
′ + S1 +A1

To find the arbitrageur’s optimal strategy we examine the selling and buying strate-
gies separately. This is important due to the difference in the arbitrageur’s profit function
and also the market clearing conditions as in equation (10).

First consider the case of selling strategy in which the arbitrageur short sells stocks at
date 1 and her demand is A1S ∈ [−C, 0]. The arbitrageur cash out after the final date at
the price V ′, so her profit at the terminal date is

ΠS = (HA1S +H
A
2S)(V

′ − p2S)

= 2C(1 −
V ′

p2S
)

(11)

Where p2S is date 2 price. Using the market clearing condition under the selling strategy
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from equation (10), date 2 price is

p2S =

(
V ′ − βV − 2C+ β(V ′ + S1) + βA1S

)
(V ′ + S1 +A1S)

V ′ + S1 + 2A1S

(12)

Having the profit function, the arbitrageur’s optimal selling strategy solves the following
problem:

Max
A1S

2C(1 −
V ′

p2S
)

s.t. − C 6 A1S 6 0 (capital constraint)
ΠS(A

∗
1S) > 0 (IR constraint)

(13)

The following lemma sketches the optimal selling strategy for the arbitrageur.

Lemma A.1 In response to a positive shock, the optimal selling strategy for arbitrageurs at date
1 is A∗1S = −C, i.e. the capital constraint is binding, if the arbitrage capital is limited and retail
investors’ attention bias is large enough, that is C ∈

[
0, 1

2
(V ′ − βV)

]
and β > β∗, where β∗ is

defined in the solution to
f(β∗) = 0 (14)

and f(β) ≡ (κ2 ∆V2)β3 + 2κ ∆V(V ′ − V
2
− C)β2 +

(
(V ′ − C)2 − V(V ′ − C) − 2κC ∆V

)
β+ 2C2 − CV ′ > 0.

Proof See Appendix A.2.

Now consider the case of buying strategy in which the arbitrageur buys stocks at date
1 and her demand is A1B ∈ (0,C1]. In this case, the arbitrageur’s profit is

ΠB = (HA2B)(V
′ − p2B)

=
(

2C+A1B(
p2B

p1B
− 2)

)
(1 −

V ′

p2B
)

(15)

Where, using the date 2 market clearing condition from equation (10), date 2 price is

p2B =

(
V ′ − βV − 2C+ β(V ′ + S1) + (2 + β)A1B

)
(V ′ + S1 +A1B)

V ′ + S1 + 3A1B

(16)

Notice the difference between the first line of equations (11) and (15). When the arbi-
trageur sells stocks at date 1, she adjusts her margin at date 2 but holds her stock holding
from date 1 to the final date, thus we see (HA1S+H

A
2S) as the quantity she holds at the final

date. However, under the buying strategy she closes her long position at date 2 and turn
it to a new short sell position. Therefore, the quantity she holds until the final date is only
HA2B.

Lemma A.1 sketches the optimal selling strategy, A∗1S = −C. This proposition shows
that under limited capital and attention bias, the optimal selling strategy dominates all
other strategies. We have already shown in lemma A.1 that A∗1S dominates all other sell-
ing strategies. So to complete the proof, it is sufficient to show that the optimal selling
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strategy dominates all buying strategies, too. From lemma A.1 we have Π∗S = ΠS(A
∗
1S) =

2C(1 − V ′

p∗2S
). Also, from the analysis of the buying strategy in equation (15) we know

ΠB =
(

2C−A1B(
p2B

p1B
− 2)

)
(1 − V ′

p2B
).

The ideal way to prove this proposition is to solve for the optimal buying strategy, and
to compare the payoff of the optimal strategies in the two cases and find the dominant
strategy. However, analytically solving for the optimal buying strategy is almost impos-
sible due to the cumbersome algebra. Instead, we find an upper bound for ΠB, UB(ΠB),
and compare it to Π∗S. If Π∗S is larger than UB(ΠB), we conclude that the optimal selling
strategy dominates all buying strategies and indeed is the dominant strategy.

Since A1B(
p2B

p1B
− 2) < 0, 2C is an upper bound for the first bracket in ΠB. Taking

derivative of the second bracket to find its maximum, we have

∂

∂A1B

(
1 −

V ′

p2B

)
=

∂

∂p2B

(
1 −

V ′

p2B

)
× ∂p2B
∂A1B

=
∂

∂p2B

(
1 −

V ′

p2B

)
×

(2 + β)
(

3A2
1B + 2QA1B +Q(Q− 2P

2+β
)
)

(Q+ 3A1B)2
> 0

(17)

Where P and Q are defined in equation (23). Thus the second bracket in ΠB achieves its
maximum when A1B = C. Therefore, we can define an upper bound for the profit under
the buying strategy as UB(ΠB) ≡ 2C(1 − V

p2B(C)
). Therefore, we have

Π∗S > UB(ΠB)

⇔ 2C(1 −
V ′

p∗2S
) > 2C(1 −

V ′

p2B(C)
)

⇔ P∗2S > p2B(C)

⇔ (P − βC)(Q− C)

(Q− 2C)
>

(P + (2 + β)C)(Q+ C)

(Q+ 3C)

⇔ (
Q+ 3C

Q+ C
)× (

Q− C

Q− 2C
) >

P + (2 + β)C

P − βC

⇔ (1 +
2C

Q+ C
)× (1 +

C

Q− 2C
) > 1 +

2C(1 + β)

P − βC

⇔ 3(Q− C/3)

(Q− 2C)× (Q+ C)
>

2(1 + β)

P − βC

⇔ 3(Q− C/3)

(Q− 2C)
>

2(1 + β)× (Q+ C)

P − βC

(18)

Since 3(Q−C/3)
(Q−2C)

> 3, it is sufficient to show 2(1+β)×(Q+C)
P−βC

< 3. Substituting for P, Q, and
S1 = βκ ∆V , the sufficient condition is equivalent to (κ ∆V)β2+(V ′−3V−5C−2κ ∆V)β+
(V ′ − 8C) > 0.
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This inequality holds if and only if C <
V ′

8
and β < β̂, where

β̂ =
2κ∆V + 3V − V ′ + 5C−

√
(2κ∆V + 3V − V ′ + 5C)2 − 4κ ∆V(V ′ − 8C)

2κ ∆V
(19)

Notice that the other root for the quadratic expression of the sufficient condition is larger
than one, thus it is not part of the solution since β ∈ [0, 1]. From lemma A.1 for the
optimal selling strategy to be individual rational it must be the case that β > β∗ and
C < 1

2
(V ′ − βV). If β∗ > β̂ then A∗1S never dominates any A1B. However, β∗ is increasing

in C, and β̂ is decreasing in C. Evaluating β∗ and β̂ on the two extremes of the range for
C, we get

At C = 0, β̂ > 0 and β∗ = 0⇒ β̂− β∗ > 0

At C =
V ′

8
, β̂ = 0 and β∗ > 0⇒ β̂− β∗ < 0

(20)

Because β̂ − β∗ is a continuous function, Kakutani’s fixed point theorem implies that
∃C∗ ∈ [0, V

′

8
] such that β̂ > β∗,∀C ∈ [0,C∗], and C∗ is the solution to

β∗(C) = β̂(C) (21)

Hence, with limited arbitrage capital and large enough attention bias, the optimal
selling strategy dominates every buying strategy; that is
If C ∈ [0,C∗] and β ∈ [β∗, β̂], then Π∗S > ΠB(A1B), ∀A1B ∈ [0,C].

A.2 Proof of Lemma A.1

Proof The optimal selling strategy of the arbitrageur solves the following problem:

Max
A1S

2C(1 −
V ′

p2S
)

s.t. − C 6 A1S 6 0 (capital constraint)
ΠS(A

∗
1S) > 0 IR constraint

(22)

First, we solve the problem without the IR constraint and then check whether IR is satis-
fied. Let P ≡ V ′ − βV − 2C + β(V ′ + S1) and Q ≡ V ′ + S1; date 2 price can be written
as

P2S =
(P + βA1S)(Q+A1S)

Q+ 2A1S

=
βA2

1S + (βQ+ P)A1S + PQ

2A1S +Q
(23)
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Therefore, the profit is calculated asΠS = 2C(1− V ′

p2S
) = 2C−2CV ′

2A1S +Q

βA2
1S + (βQ+ P)A1S + PQ

.

Taking derivative with respect to A1S, we have

∂ΠS

∂A1S

= 4βCV ′
A2

1S + (V ′ + S1)A1S −
1
2
(V ′ + S1)(V

′ − βV − 2C)(
βA2

1S + (βQ+ P)A1S + PQ
)2 < 0 , ∀A1S ∈ (A−

0 ,A+
0 )

(24)
Where A−

0 and A+
0 are roots of the quadratic in the numerator. Notice that [−C, 0] ⊂

(A−
0 ,A+

0 ) if C <
1

2
(V ′ − βV). Thus we have the following result A∗1S = −C, if C ∈[

0,
1

2
(V ′ − βV)

]
.

Next we have to check under what conditions the IR constraint is satisfied.

Π∗S = ΠS(A
∗
1S) = 2C(1 −

V ′

p2S(A∗1S)
) > 0

⇔ p2S(A
∗
1S) > V

′

⇔

(
V ′ − βV − 2C+ β(V ′ + S1) − βC

)
(V ′ + S1 − C)

V ′ + S1 − 2C
> V ′

⇔ β(V ′ + S1 − C)
2 − (βV + 2C)(V ′ + S1 − C) + CV

′ > 0

⇔ f(β) ≡ (κ2 ∆V2)β3 + 2κ ∆V(V ′ − V
2
− C)β2 +

(
(V ′ − C)2 − V(V ′ − C) − 2κC ∆V

)
β+ 2C2 − CV ′ > 0

(25)

In the last line, we substitute for S1 using S1 = βκ ∆V . If C < V ′

2
then we have f(β)|β=0 <

0, and we always have f(β)|β=1 > 0. Since f(β) is continuous in β, Kakutani’s fixed point
theorem implies that ∃ β∗ such that

f(β∗) = 0 (26)

And f(β) > 0, ∀ β > β∗, that is the IR constraint is satisfied.

Remark β∗ >
C

κ ∆V
, since f(

C

κ ∆V
) < 0.

Proof

f(
C

κ ∆V
) = (κ2 ∆V2)(

C

κ ∆V
)3 + 2κ ∆V(V ′ − V

2
− C)(

C

κ ∆V
)2 +

(
(V ′ − C)2 − V(V ′ − C) − 2κC ∆V

)
(
C

κ ∆V
) + 2C2 − CV ′

=
C

κ
V ′ − CV ′ < 0 since κ > 1. �

(27)

If the attention bias is large enough and the arbitrage capital is limited, that is β > β∗

and C < V ′

2
, then the IR constraint is satisfied. Considering these conditions along with

the previous bound on C, we concludeA∗1S = −C, if C ∈
[
0,

1

2
(V ′−βV)

]
and β > β∗.
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A.3 Proof of Corollary 7.2

Proof Part 1) From the remark A.2 in the proof of proposition 7.1, we know β∗ >
C

κ ∆V
.

So if β > β∗, we have β >
C

κ ∆V
⇒ βκ ∆V − C > 0⇒ p∗1 > V .

Part 2) p∗1 > p∗2 ⇒
p∗2
p∗1
< 1. Substituting for p∗1 and p∗2 using equations (7) and (8), this

inequality is equivalent to

V ′ − βV − 2C+ β(V ′ + βκ ∆V − C)

V ′ + βκ ∆V − 2C
< 1

⇔ β <
(κ− 1)∆V + C

κ ∆V

(28)

Let β̄ ≡ (κ− 1)∆V + C

κ ∆V
. According to proposition 7.1, β < β̂ for the selling strategy to

be the dominant strategy. To complete the proof, it is sufficient to show β̄ > β̂. Using
equations (??) and (28), and simplifying, the sufficient condition is equivalent to

(κ− 1)∆V + C

κ ∆V
>

2κ∆V+3V−V ′+5C−
√

(2κ∆V+3V−V ′+5C)2−4κ ∆V(V ′−8C)

2κ ∆V

⇔ 16C2 +
(
(52κ− 16)∆V + 8V

)
C+

(
(2κ− 1)∆V + 2V

)2
+
(
∆V + 2V

)2
> 0

(29)

Since C > 0, the last inequality in (29) always holds.
Part 3) Substitute for p∗1 and p∗2 using equations (7) and (8), respectively.

p∗1 − p
∗
2 > p

∗
2 − V

′

⇔ 2V ′ + βκ ∆V − C− 2×

(
V ′ − βV − 2C+ β(V ′ + βκ ∆V − C)

)
(V ′ + βκ ∆V − C)

V ′ + βκ ∆V − 2C
> 0

⇔ (β2 ∆V2 − 2β3 ∆V2)κ2 +
(
β ∆V × (V ′ + 2C+ 2βV + 2βC)

)
κ+ 2(V ′ − c)(C+ βC− β ∆V) > 0

(30)

Given the ranges for β and C, the coefficients of κ2 and κ in the last inequality in (30) are
always positive. Therefore, it is sufficient to show that the last expression is positive.

C+ βC− β ∆V > 0⇔ β <
C

∆V − C
(31)

Notice that
C

∆V − C
> β̂ according to equation (19), Hence inequality (31) always holds.
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A.4 Proof of Corollary 7.3

Proof The first part, about the date 1 price, is straightforward by taking derivative of p∗1
with respect to β.

To show the second part, by simplifying equation (8) we get

p∗2 =
(κ2 ∆V2)β3 + 2κ ∆V(V ′ − V

2
− C)β2 + (κ ∆V(V ′ − 2C) + (V ′ − C)(V ′ − v− C))β+ (V ′ − C)(V ′ − 2C)

(κ ∆V)β+ (V ′ − 2C)
(32)

Taking derivative with respect to β and simplifying leaves us with

∂p∗2
∂β

=

(2κ3 ∆V3)β3 +
(

2κ2 ∆V2(V ′ − V
2
− C) + 3κ2 ∆V2(V ′ − 2C)

)
β2 +

(
4κ ∆V(V ′ − V

2
− C)(V − 2C)

)
β+ (V ′ − 2C)

(
C2 − (V ′ + (κ+ 1)∆V)C+ V ′ ∆V

)
(
(κ ∆V)β+ (V ′ − 2C)

)2
(33)

Notice that we want to show that if C ∈ [0,C∗] and β ∈ [β∗, β̂], then
∂p∗2
∂β

> 0. Notice

that the numerator in equation (33) is increasing in β. Therefore it is sufficient to show
∂p∗2
∂β

|β=β∗ > 0. Substituting for β∗ from equation (26), the numerator in equation (33) is

equal to

κ2 ∆V2(V ′ + V − 2C)(β∗)2 +
(

2κ ∆V((V ′ − C)2 − CV ′)
)
β∗ + (V ′ − 2C)

(
C2 − (V ′ + (κ− 1)∆V)C+ V ′∆V

)
> 0

(34)
Which is always positive for C ∈ [0,C∗].

A.5 Proof of Proposition 7.5

Proof Because retail traders do not sell short, there are only two demand forces in this
case, the demand from liquidity traders and from arbitrageurs. Therefore, adjusting equa-
tion (6) to the case of negative news shocks, the date 1 market clearing condition is

HL1 +HA1 = 1 (35)

Also, adjusting equation (10) to this case, date 2 market clearing conditions in the two
cases are {

HL2 +HA2 = 1 +HA1B if buying strategy at t = 1

HL2 +HA2 = 1 if selling strategy at t = 1
(36)

Substituting the passive demand and the arbitrageur’s demand into equation (35) and
solving for date 1 price, we have p1 = V +A1.

The arbitrageur’s profit if she adopts the selling strategy, is calculated as in equation
(11). Using the market clearing condition under the selling strategy and substituting for

demands and date 1 price, date 2 price this case is p2S =
(V − 2C)(V +A1S)

(V + 2A1S)
.
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The arbitrageur’s optimal selling strategy solves the same problem as in (13). Lemma
A.2 shows the arbitrageur’s optimal selling strategy in response to bad news.

Lemma A.2 In response to a negative shock, the optimal selling strategy for the arbitrageurs at
date 1 is A∗1S = −C, i.e. the capital constraint is binding, if the arbitrage capital is limited, that is
C ∈

[
0,min{V

2
,−∆V}

]
.

Proof See Appendix A.6.

However, the arbitrager is able to adopt buying strategy too. Her profit, if she buys
at day 1, is the same as (15). By substituting the demands in the market clearing condition

under the buying strategy in (36), date 2 price is calculated as p2B =
(V − 2C+ 2A1B)(V +A1B)

(V + 3A1B)
.

Our goal is to find the optimal strategy for the arbitrageur at date 1. Sketch of the proof
here is similar to section A.1 where we find the optimal strategy in response to positive
shocks. We use the optimal selling strategy from lemma A.2. We must compare it to the
optimal buying strategy to determine the arbitrageur’s dominant strategy. However, to
avoid cumbersome algebra, we find an upper bound for the profits of the buying strate-
gies and compare it to the profit from the optimal selling strategy. Remind from equation
(15) that a buying strategy’s profit is ΠB =

(
2C + A1B(

p2B

p1B
− 2)

)
(1 − V ′

p2B
), where p1B and

p2B are as stated in the text.
The upper bound for the expression in the first bracket is 2C. Moreover, this expres-

sion is decreasing inA1B, since ∂
∂A1B

(
p2B

p1B

)
< 0 and

(
p2B

p1B
−2
)
< 0. However, the expression

in the second bracket is increasing in A1B since

∂

∂A1B

(
1 −

V ′

p2B

)
=

∂

∂p2B

(
1 −

V ′

p2B

)
× ∂p2B
∂A1B

=
∂

∂p2B

(
1 −

V ′

p2B

)
× (

2VA1B

(V + 3A1B)2
) > 0 (37)

Now consider the profit from the optimal selling strategy. Using equation (11), we can
calculate it as

Π∗S = ΠS(A
∗
1S) = 2C(1 −

V ′

p∗2S
) (38)

Comparing ΠB and Π∗S, It is clear that
(

2C + A1B(
p2B

p1B
− 2)

)
6 2C. Therefore, if, for any

buying strategy A1B ∈ [0,C], ΠB were to be larger than Π∗S, then the second bracket in ΠB
should be larger than the second bracket in Π∗S, that is

1 −
V ′

p2B
> 1 −

V ′

p∗2S
⇔ p2B > p

∗
2S

⇔ 2(A1B)
2 + (3V − 2C)A1B + V(V − 2C)

V + 3A1B

> V − C

⇔ A1B >
−C+

√
C2 + 8CV

4

(39)
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From the bounds on C in lemma A.2 we know C < V
2

. So we can replace V by 2C in the
last line of (39) and still have the inequality preserved. Therefore, we have

A1B >
−C+

√
C2 + 8CV

4
>

−C+
√
C2 + 8C× (2C)

4
=

−C+
√

17C2

4
>
C

2
(40)

This means all buying strategies that dominate the optimal selling strategy, if any, must
lie in

[
C
2

,C
]
. Having this more restricted domain for A1B, now we are able to calculate

an upper bound for ΠB. Since the first bracket in ΠB is decreasing in A1B, it achieves it
maximum at A1B = C

2
. On the contrary, the second bracket in ΠB is increasing in A1B, it

achieves it maximum atA1B = C. Plugging these values ofA1B in ΠB, the upper bound is

UB(ΠB) ≡
(

2C+
C

2

(V − 2C+ C

V + 3
2
C

− 2
))(

1 −
V ′ × (V + 3

2
C)

(V − 2C+ C)(V + C
2
)

)
=
(
C× 3V + 2C

2V + 3C

)(
1 −

V ′ × (2V + 3C)

(V − C)(2V + C)

) (41)

Using equations (38) and (41), we have

Π∗S > UB(ΠB)

⇔ 2C(1 −
V ′

p∗2S
) >

(
C× 3V + 2C

2V + 3C

)(
1 −

V ′ × (2V + 3C)

(V − C)(2V + C)

)
⇔ 2(1 −

V ′

p∗2S
) > (

3V + 2C

2V + 3C
)︸ ︷︷ ︸
(

1 −
V ′ × (2V + 3C)

(V − C)(2V + C)

)
> 1

⇔ 2(1 −
V ′

p∗2S
) >

(
1 −

V ′ × (2V + 3C)

(V − C)(2V + C)

)
⇔ C2 + (V − V ′)C− 2V(V − V ′) < 0

⇔ C <
−(V − V ′) +

√
(V − V ′)2 + 8V × (V − V ′)

2
< −∆V

(42)

The last inequality always hold so long as we have the limited arbitrage capital, that is
C ∈

[
0,min{V

2
,−∆V}

]
as stated in lemma A.2. Hence, with this restriction on the arbitrage

capital the optimal selling strategy, A∗1S = −C, is always the dominant strategy for the
arbitrageur.

A.6 Proof of Lemma A.2

Proof Sketch of the proof is similar to what we did before. The arbitrageur solves the
program in (13). First, we solve the problem without the IR constraint and then add the
necessary conditions to satisfy the IR constraint to the solution.

∂ΠS

∂A1S

=
∂ΠS

∂p2S
× ∂p2S
∂A1S

=
2CV ′

(p2S)2
× −V × (V − 2C)

(V + 2A1S)2
(43)

32



Therefore,
∂ΠS

∂A1S

< 0, if C <
V

2
.

The last step is to find conditions under which the IR constraint is satisfied and consider
them in sketching the final solution. The IR constraint is satisfied if

Π∗S = ΠS(A
∗
1S) = 2C(1 −

V ′

p2S(A∗1S)
) > 0

⇔ p2S(A
∗
1S) > V

′

⇔ (V − 2C)(V − C)

(V − 2c)
> V ′

⇔ C 6 V − V ′ = −∆V

(44)

Therefore, we conclude that if the arbitrage capital is limited, that is C < min{V
2

,−∆V},
then the optimal selling strategy is A∗1S = −C.

A.7 Proof of Corollary 7.7

Proof Given the assumptions about the liquidity shocks, the liquidity traders’ stock hold-
ing is

HLt =

{
V ′

pt
t = 1

V
pt

t > 1
(45)

As we discussed, the arbitrageur and retail investors do not trade on date 1. Therefore,
using the market clearing condition in equation (6), the date 1 price is p∗1 = V ′.

At date 2, however, the previous day’s price jump attracts retail investors. Same as
before, they only trade in response to positive price jumps and their demand will be
∆V + St. Retail investors’ date 2 demand shock (S2) depends on the sign of the price
shock at date 1: ∆p1 = p∗1 − p0 = V ′ − V . Retail investors’ stock holding at date 2 can be
summarized as in equation (46).

HR2 =

{
0 V ′ < V

β∆p1 V ′ > V
(46)

As expected, their stock holding is zero when the price shock is negative. In the case
of positive shocks, since there is no change in the fundamental value with the no-news
shocks (∆V = 0), retail investors’ demand at date 2 is only due to St.

The date 3 price will be equal to the fundamental value (V) due to unlimited arbitrage
capital. The arbitrageur chooses an optimal strategy to maximize overall profits. From
the market clearing condition, date 2 price can be computed as

p2 = V +A2 + 1{V ′ > V}× β∆p1 (47)

Basically date 2 price is determined by demands of liquidity traders (V), the arbitrageur
(A2), and retail investors (1{V ′ > V}× β∆p1).

If the date 1 price shocks is negative (V ′ < V), the arbitrageur’s optimal strategy is
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not to trade at date 2. Because any trade by the arbitrageur forces the price to deviate
from the fundamental value and the arbitrageur loses money at date 3 when closing her
trades at the fundamental value. However if the date 1 price shock is positive (V ′ > V)

and the arbitrage capital is limited (C ∈
[
0,β

∆V

2

]
), the arbitrageur’s optimal strategy is

to sell. The upper bound in the capital constraint guaranties that the price remains above
fundamental value at date 2. So the arbitrageur’s optimal strategy at date 2 is summarized
as:

A∗2 =

{
0 V ′ < V

−2C V ′ > V
(48)

Substituting this optimal strategy into equation (47), the equilibrium date 2 price is

p∗2 =

{
V V ′ < V

V − 2C+ β× (V ′ − V) V ′ > V
(49)

As equation (49) suggests, in the case of date 1 negative shock, the price is back to funda-
mentals at date 2. In the case of date 1 positive shock, under the limited arbitrage capital,
the price declines after the shock, and it reaches the fundamental value at date 3.

34


