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1 Summary

This appendix provides additional results to the main paper, “Lucky Factors”, by
Campbell R. Harvey and Yan Liu. It is organized as follows.

Appendix IA considers time-series dependency in the data. It first describes the
block bootstrap method that we use to adjust for time-series dependency and then
presents the testing results, controlling for time-series dependency.

Appendix IB considers several alternative test assets. Appendix IB.1 investigates
the impacts of small stocks on our results and presents results that exclude small-cap
stocks. Appendix IB.2 presents testing results based on Fama-French 49 industry
portfolios. Appendix IB.3 presents testing results based on Fama-French 25 size and
book-to-market sorted portfolios and under the value weighted test statistics.

Appendix IC presents testing results that adjust for infrequent trading for some
stocks.

Appendix ID describes further details in the bootstrap implementation and shows
how to apply our idea to Fama-MacBeth regressions.

Appendix IE relates our approach to five stands of literature: IE.1 for nonpara-
metric bootstrap, IE.2 for factor interpretations, IE.3 for multiple hypothesis testing,
IE.4 for sequential tests, and IE.5 for the GRS test, spanning regressions, and a SDF
interpretation.

Appendix IF describes and interprets test results based on popular portfolio sorts.

Appendix IG discusses several related issues to our testing framework, including
time-varying factor loadings, stepwise model selection, spurious factors, and factor
model uncertainty and model misspecification.

Appendix IH (FAQ) answers several questions that the readers may want to ask.
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A Time Dependence

A.1 Block Bootstrap

Our block bootstrap follows the so-called stationary bootstrap proposed by Politis and
Romano (1994) and subsequently applied by White (2000) and Sullivan, Timmermann
and White (1999). The stationary bootstrap applies to a strictly stationary and
weakly dependent time-series to generate a pseudo time series that is stationary. The
stationary bootstrap allows us to resample blocks of the original data, with the length
of the block being random and following a geometric distribution with a mean of 1/q.
Therefore, the smoothing parameter q controls the average length of the blocks. A
small q (i.e., on average long blocks) is needed for data with strong dependence and a
large q (i.e., on average short blocks) is appropriate for data with little dependence.
We describe the details of the algorithm in this section.

Suppose the set of time indices for the original data is 1, 2, . . . , T . For each boot-
strapped sample, our goal is to generate a new set of time indices {θ(t)}Tt=1. Following
Politis and Romano (1994), we first need to choose a smoothing parameter q that can
be thought of as the reciprocal of the average block length. The conditions that
q = qn needs to satisfies are:

0 < qn ≤ 1, qn → 0, nqn →∞.

Given this smoothing parameter, we follow the following steps to generate the new
set of time indices for each bootstrapped sample:

• Step I. Set t = 1 and draw θ(1) independently and uniformly from 1, 2, . . . , T .

• Step II. Move forward one period by setting t = t+1. Stop if t > T . Otherwise,
independently draw a uniformly distributed random variable U on the unit
interval.

1. If U < q, draw θ(t) independently and uniformly from 1, 2, . . . , T .

2. Otherwise (i.e., U ≥ q), set θ(t) = θ(t− 1) + 1 if θ(t) ≤ T and θ(t) = 1 if
θ(t) > T .

• Step III. Repeat step II.

A.2 Results under Time Dependence

We set q = 12 to allow a long enough window for time-series dependency to die
off. Table A.21 and A.22 show the results under the equally weighted and the value
weighted test statistics, respectively. Compared to Table 3 and 4 in the main paper,
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allowing for time-series dependency seems to make smb less significant. But overall,
time-series dependency does not seem to have a substantial impact on our results.

Table A.21: Individual Stocks as Test Assets, Equally Weighted Scaled In-
tercepts, Controlling for Time-Series Dependency

Test results on 14 risk factors using equally weighted individual stocks. (See Table 1 for the definitions of risk factors).
We use individual stocks from CRSP that cover the 1968–2012 period to test 14 risk factors. A stock needs to have
at least 36 monthly observations (either in the original or the bootstrapped sample) to enter our tests. The baseline
model refers to the model that includes the pre-selected risk factors. We focus on the panel regression model described
in Section 2.2. The two metrics (i.e., SImew and SImed

ew ), which measure the difference in equally weighted scaled
mean/median absolute regression intercept, are defined in Section 3.2. For inference, we rely on block bootstrap with
the block size parameter set at q = 12, as described in Appendix A.1 of the on-line appendix.

Panel A: Baseline = No factor Panel B: Baseline = mkt

single test single test single test single test

Factor SImew 5th-percentile p-value SImed
ew 5th-percentile p-value SImew 5th-percentile p-value SImed

ew 5th-percentile p-value

mkt -0.192 [-0.117] (0.001) -0.206 [-0.119] (0.002)
smb -0.081 [-0.077] (0.045) -0.109 [-0.100] (0.047) -0.041 [-0.047] (0.091) -0.062 [-0.064] (0.077)
hml 0.088 [-0.027] (0.986) 0.108 [-0.028] (0.974) -0.021 [-0.023] (0.107) -0.047 [-0.026] (0.007)
mom 0.091 [-0.034] (1.000) 0.110 [-0.044] (1.000) 0.070 [-0.007] (1.000) 0.089 [-0.015] (1.000)
skew -0.008 [-0.028] (0.332) -0.002 [-0.043] (0.530) -0.004 [-0.013] (0.205) -0.003 [-0.014] (0.362)
psl 0.011 [-0.018] (0.968) 0.002 [-0.026] (0.739) 0.001 [-0.007] (0.357) -0.003 [-0.012] (0.228)
roe 0.163 [-0.049] (0.987) 0.187 [-0.063] (0.995) 0.142 [-0.018] (0.984) 0.180 [-0.028] (0.987)
ia 0.264 [-0.034] (1.000) 0.291 [-0.039] (0.999) 0.027 [-0.010] (0.973) 0.015 [-0.012] (0.972)
qmj 0.316 [-0.089] (0.983) 0.358 [-0.107] (0.988) 0.149 [-0.029] (0.993) 0.193 [-0.040] (0.995)
bab -0.006 [-0.038] (0.562) -0.049 [-0.047] (0.042) 0.018 [-0.013] (0.972) -0.014 [-0.020] (0.087)
gp 0.017 [-0.007] (0.617) 0.030 [-0.015] (0.682) 0.023 [-0.001] (0.968) 0.017 [-0.004] (0.886)
cma 0.176 [-0.035] (1.000) 0.199 [-0.037] (0.991) -0.012 [-0.011] (0.040) -0.031 [-0.016] (0.006)
rmw 0.116 [-0.027] (0.992) 0.137 [-0.035] (0.982) 0.040 [-0.015] (0.997) 0.048 [-0.019] (0.957)
civ -0.096 [-0.055] (0.013) -0.130 [-0.070] (0.009) -0.018 [-0.019] (0.062) -0.049 [-0.029] (0.017)

multiple test multiple test multiple test multiple test

min [-0.126] (0.003) [-0.140] (0.002) min [-0.050] (0.096) [-0.065] (0.087)

Panel C: Baseline = mkt+smb Panel D: Baseline = mkt + smb+hml

single test single test single test single test

Factor SImew 5th-percentile p-value SImed
ew 5th-percentile p-value SImew 5th-percentile p-value SImed

ew 5th-percentile p-value

mkt
smb
hml -0.017 [-0.019] (0.063) -0.040 [-0.021] (0.006)
mom 0.055 [-0.004] (1.000) 0.076 [-0.007] (1.000) 0.026 [-0.006] (1.000) 0.046 [-0.008] (1.000)
skew -0.013 [-0.015] (0.087) -0.015 [-0.017] (0.063) 0.006 [-0.002] (0.529) -0.001 [-0.003] (0.676)
psl 0.011 [-0.003] (0.927) 0.016 [-0.006] (0.945) 0.010 [-0.003] (0.986) 0.007 [-0.008] (0.794)
roe 0.058 [-0.008] (0.996) 0.074 [-0.009] (0.988) 0.072 [-0.006] (0.967) 0.080 [-0.010] (0.993)
ia 0.020 [-0.015] (0.980) 0.008 [-0.019] (0.708) 0.038 [-0.004] (0.978) 0.051 [-0.006] (0.975)
qmj 0.052 [-0.009] (0.991) 0.061 [-0.010] (0.970) 0.128 [-0.003] (0.993) 0.137 [-0.007] (0.989)
bab 0.016 [-0.014] (0.893) -0.014 [-0.016] (0.082) 0.045 [-0.002] (0.979) 0.040 [-0.004] (0.990)
gp 0.022 [-0.003] (0.992) 0.020 [-0.008] (0.939) 0.059 [-0.002] (0.988) 0.055 [-0.004] (0.978)
cma 0.001 [-0.016] (0.468) -0.009 [-0.018] (0.176) 0.022 [-0.001] (0.991) 0.023 [-0.003] (0.963)
rmw -0.009 [-0.021] (0.184) -0.016 [-0.021] (0.083) 0.036 [-0.003] (1.000) 0.043 [-0.004] (0.992)
civ 0.014 [-0.008] (0.955) 0.003 [-0.012] (0.606) 0.015 [-0.009] (0.969) 0.016 [-0.013] (0.992)

multiple test multiple test multiple test multiple test

min [-0.026] (0.145) [-0.030] (0.011) min -0.010 (0.982) -0.019 (0.958)
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Table A.22: Individual Stocks as Test Assets, Value Weighted Scaled Inter-
cepts, Controlling for Time-Series Dependency

Test results on 14 risk factors using value weighted individual stocks. (See Table 1 for the definitions
of risk factors). We use individual stocks from CRSP that cover the 1968–2012 period to test 14 risk
factors. A stock needs to have at least 36 monthly observations (either in the original or the bootstrapped
sample) to enter our tests. The baseline model refers to the model that includes the pre-selected risk
factors. We focus on the panel regression model described in Section 2.2. The metric (i.e., SIvw), which
measures the difference in value weighted scaled absolute regression intercept, is defined in Section 3.5.2.
For inference, we rely on block bootstrap with the block size parameter set at q = 12, as described in
Appendix A.1. of the on-line appendix.

Panel A: Baseline = No factor Panel B: Baseline = mkt Panel C: Baseline = mkt+qmj

single test single test single test

Factor SIvw 5th-percentile p-value SIvw 5th-percentile p-value SIvw 5th-percentile p-value

mkt -0.444 [-0.216] (0.000)
smb -0.059 [-0.045] (0.019) 0.018 [-0.056] (0.852) 0.076 [-0.035] (0.996)
hml 0.144 [-0.067] (0.983) -0.038 [-0.055] (0.129) -0.016 [-0.076] (0.675)
mom 0.153 [-0.075] (0.993) 0.130 [-0.019] (1.000) 0.125 [-0.030] (1.000)
skew -0.027 [-0.041] (0.068) -0.044 [-0.035] (0.014) -0.020 [-0.032] (0.171)
psl 0.035 [-0.029] (0.976) 0.016 [-0.012] (0.990) 0.034 [-0.027] (0.998)
roe 0.105 [-0.048] (0.991) -0.079 [-0.048] (0.009) 0.038 [-0.017] (0.983)
ia 0.382 [-0.065] (0.980) -0.042 [-0.041] [0.027] 0.078 [-0.054] (0.989)
qmj 0.363 [-0.101] (0.977) -0.149 [-0.063] (0.005)
bab -0.048 [-0.038] (0.008) -0.088 [-0.037] (0.004) -0.026 [-0.043] (0.150)
gp -0.082 [-0.041] (0.005) -0.037 [-0.045] (0.078) -0.022 [-0.047] (0.222)
cma 0.314 [-0.086] (0.996) -0.052 [-0.033] (0.017) 0.019 [-0.045] (0.985)
rmw 0.045 [-0.010] (0.903) -0.146 [-0.065] (0.007) 0.053 [-0.035] (0.991)
civ -0.115 [-0.048] (0.003) 0.035 [-0.011] (0.985) -0.017 [-0.025] (0.133)

multiple test multiple test multiple test

min [-0.216] (0.000) [-0.081] (0.008) [-0.076] (0.727)
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B Alternative Test Assets

B.1 Dropping Small-Cap Stocks

To mitigate the impact of small-cap stocks, we drop small-cap stocks and rerun our
analysis. In particular, at the beginning of each year, we sort the cross-section of
individual stocks based on market capitalization and drop stocks in the lowest decile.
We redo our tests using the remaining stocks. Table B.11 and B.12 show the results
under the equally weighted and the value weighted test statistics, respectively.

Compared to Table 3 in the main paper, under the equally weighted test statis-
tics, focusing on relatively large-cap stocks makes the impact of the market factor
larger and the impact of other significant factors smaller. This is not surprising since
anomaly returns are usually substantially smaller if we exclude small stocks. Under
the value weighted test statistics, our results in Table B.12 are similar to those of
Table 4, suggesting that the value weighted test statistics are more robust to the size
cutoff that determines our return panel.
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Table B.11: Individual Stocks as Test Assets, Equally Weighted Scaled In-
tercepts, Excluding Small-Cap Stocks

Test results on 14 risk factors using equally weighted individual stocks. (See Table 1 for the definitions of risk
factors). We use relatively large-cap stocks from CRSP that cover the 1968–2012 period to test 14 risk factors. In
particular, at the beginning of each year, we sort the cross-section of stocks based on market capitalization and drop
stocks in the lowest decile. We apply our tests to the remaining stocks. A stock needs to have at least 36 monthly
observations (either in the original or the bootstrapped sample) to enter our tests. The baseline model refers to the
model that includes the pre-selected risk factors. We focus on the panel regression model described in Section 2.2. The
two metrics (i.e., SImew and SImed

ew ), which measure the difference in equally weighted scaled mean/median absolute
regression intercept, are defined in Section 3.2.

Panel A: Baseline = No factor Panel B: Baseline = mkt

single test single test single test single test

Factor SImew 5th-percentile p-value SImed
ew 5th-percentile p-value SImew 5th-percentile p-value SImed

ew 5th-percentile p-value

mkt -0.325 [-0.243] (0.000) -0.345 [-0.257] (0.000)
smb -0.058 [-0.068] (0.072) -0.085 [-0.080] (0.028) -0.017 [-0.032] (0.294) -0.055 [-0.041] (0.008)
hml 0.163 [-0.030] (0.968) 0.197 [-0.038] (0.979) 0.004 [-0.036] (0.800) -0.025 [-0.042] (0.221)
mom 0.093 [-0.056] (1.000) 0.096 [-0.070] (1.000) 0.057 [-0.010] (1.000) 0.052 [-0.020] (1.000)
skew -0.010 [-0.034] (0.247) 0.012 [-0.047] (0.716) 0.001 [-0.014] (0.489) 0.015 [-0.020] (0.788)
psl 0.040 [-0.036] (0.993) 0.047 [-0.051] (0.989) 0.005 [-0.014] (0.702) -0.013 [-0.023] (0.115)
roe 0.109 [-0.073] (0.974) 0.115 [-0.096] (0.997) 0.052 [-0.021] (0.993) 0.058 [-0.024] (0.971)
ia 0.402 [-0.046] (1.000) 0.473 [-0.049] (0.992) 0.013 [-0.024] (0.855) -0.017 [-0.037] (0.279)
qmj 0.416 [-0.097] (0.990) 0.501 [-0.122] (0.974) 0.030 [-0.026] (0.990) 0.048 [-0.033] (0.983)
bab -0.014 [-0.052] (0.381) -0.060 [-0.070] (0.087) 0.039 [-0.015] (0.994) -0.011 [-0.024] (0.170)
gp -0.024 [-0.043] (0.237) -0.010 [-0.052] (0.478) 0.034 [-0.021] (0.980) 0.021 [-0.030] (0.952)
cma 0.282 [-0.063] (1.000) 0.326 [-0.074] (0.986) -0.009 [-0.017] (0.267) -0.048 [-0.031] (0.003)
rmw 0.112 [-0.029] (0.988) 0.144 [-0.038] (0.990) 0.001 [-0.034] (0.734) -0.011 [-0.039] (0.494)
civ -0.112 [-0.052] (0.004) -0.151 [-0.055] (0.001) 0.019 [-0.0018] (0.979) 0.003 [-0.024] (0.666)

multiple test multiple test multiple test multiple test

min [-0.243] (0.000) [-0.257] (0.000) min [-0.040] (0.661) [-0.051] (0.017)

Panel C: Baseline = mkt+smb

single test single test

Factor SImew 5th-percentile p-value SImed
ew 5th-percentile p-value

mkt
smb
hml 0.015 [-0.029] (0.971) 0.020 [-0.037] (0.918)
mom 0.054 [-0.009] (1.000) 0.080 [-0.015] (1.000)
skew -0.009 [-0.015] (0.097) 0.000 [-0.020] (0.457)
psl 0.009 [-0.012] (0.895) 0.023 [-0.018] (0.963)
roe 0.060 [-0.014] (0.991) 0.094 [-0.025] (0.976)
ia 0.026 [-0.021] (0.977) 0.023 [-0.031] (0.930)
qmj 0.071 [-0.026] (0.999) 0.118 [-0.030] (0.991)
bab 0.029 [-0.018] (0.943) 0.018 [-0.026] (0.785)
gp 0.027 [-0.018] (1.000) 0.035 [-0.027] (0.983)
cma 0.001 [-0.020] (0.676) -0.009 [-0.028] (0.234)
rmw 0.017 [-0.021] (0.986) 0.036 [-0.038] (0.971)
civ 0.019 [-0.011] (0.958) 0.018 [-0.027] (0.896)

multiple test multiple test

min [-0.036] (0.831) [-0.046] (0.897)
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Table B.12: Individual Stocks as Test Assets, Value Weighted Scaled Inter-
cepts, Excluding Small-Cap Stocks

Test results on 14 risk factors using value weighted individual stocks. (See Table 1 for the definitions
of risk factors). We use relatively large-cap stocks from CRSP that cover the 1968–2012 period to test
14 risk factors. In particular, at the beginning of each year, we sort the cross-section of stocks based on
market capitalization and drop stocks in the lowest decile. We apply our tests to the remaining stocks. A
stock needs to have at least 36 monthly observations (either in the original or the bootstrapped sample)
to enter our tests. The baseline model refers to the model that includes the pre-selected risk factors. We
focus on the panel regression model described in Section 2.2. The metric (i.e., SIvw), which measures
the difference in value weighted scaled absolute regression intercept, is defined in Section 3.5.2.

Panel A: Baseline = No factor Panel B: Baseline = mkt Panel C: Baseline = mkt+qmj

single test single test single test

Factor SIvw 5th-percentile p-value SIvw 5th-percentile p-value SIvw 5th-percentile p-value

mkt -0.468 [-0.267] (0.000)
smb -0.045 [-0.043] (0.031) 0.033 [-0.070] (0.911) 0.167 [-0.040] (0.987)
hml 0.162 [-0.072] (0.995) -0.007 [-0.051] (0.534) 0.039 [-0.074] (0.983)
mom 0.151 [-0.067] (1.000) 0.125 [-0.014] (1.000) 0.124 [-0.038] (1.000)
skew -0.023 [-0.043] (0.169) -0.040 [-0.041] (0.060) -0.011 [-0.025] (0.190)
psl 0.038 [-0.026] (0.975) 0.022 [-0.014] (0.986) 0.045 [-0.019] (0.999)
roe 0.086 [-0.051] (0.997) -0.124 [-0.057] (0.002) 0.035 [-0.023] (0.981)
ia 0.408 [-0.085] (0.983) -0.019 [-0.054] (0.029) 0.144 [-0.057] (0.989)
qmj 0.371 [-0.128] (0.998) -0.200 [-0.086] (0.001)
bab -0.037 [-0.041] (0.073) -0.062 [-0.035] (0.007) 0.027 [-0.036] (0.975)
gp -0.091 [-0.054] (0.003) -0.035 [-0.045] (0.123) -0.040 [-0.061] (0.218)
cma 0.339 [-0.093] (0.989) -0.028 [-0.043] (0.120) 0.070 [-0.053] (0.998)
rmw 0.042 [-0.016] (0.945) -0.160 [-0.080] (0.004) 0.042 [-0.027] (0.990)
civ -0.110 [-0.055] (0.006) 0.061 [-0.029] (0.997) 0.016 [-0.016] (0.976)

multiple test multiple test multiple test

min [-0.267] (0.000) [-0.099] (0.003) [-0.078] (0.513)
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B.2 Fama-French 49 Industry Portfolios

We use Fama-French 49 industry portfolios as test assets. The sample period is from
1972 to 2012. To construct the value weighted test statistics, we use the aggregate
market capitalization for each industry portfolio as the value weight.

By using the 49 industry portfolios, the impact of the market factor becomes larger
compared to its impact when using individual stocks. This is because the level of noise
is lower for sorted portfolios than for individual stocks. However, we are also losing
power in identifying true risk factors by using industry portfolios. In particular,
neither smb nor hml is significant under the equally weighted test statistics. The
results under value weighting are similar to the results in the main paper.
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Table B.21: Fama-French 49 Portfolios as Test Assets, Equally Weighted
Scaled Intercepts

Test results on 14 risk factors using Fama-French 49 portfolios, 1972-2012. (See Table 1 for the definitions of risk
factors.). The baseline model refers to the model that includes the pre-selected risk factors. We focus on the panel
regression model described in Section 2.2. The two metrics (i.e., SImew and SImed

ew ), which measure the difference in
equally weighted scaled mean/median absolute regression intercepts, are defined in Section 3.2.

Panel A: Baseline = No factor Panel B: Baseline = mkt

single test single test single test single test

Factor SImew 5th-percentile p-value SImed
ew 5th-percentile p-value SImew 5th-percentile p-value SImed

ew 5th-percentile p-value

mkt -0.670 [-0.366] (0.000) -0.757 [-0.387] (0.000)
smb -0.162 [-0.185] (0.071) -0.182 [-0.218] (0.084) 0.061 [-0.108] (0.910) 0.166 [-0.170] (0.959)
hml 0.249 [-0.122] (0.994) 0.273 [-0.155] (0.987) 0.055 [-0.102] (0.918) 0.073 [-0.174] (0.846)
mom 0.286 [-0.134] (0.999) 0.336 [-0.166] (0.996) 0.158 [-0.037] (1.000) 0.476 [-0.098] (1.000)
skew -0.042 [-0.051] (0.069) -0.052 [-0.076] (0.090) -0.126 [-0.072] (0.007) -0.189 [-0.137] (0.015)
psl 0.028 [-0.035] (0.912) 0.044 [-0.051] (0.907) -0.019 [-0.026] (0.097) -0.002 [-0.083] (0.498)
roe 0.337 [-0.111] (1.000) 0.343 [-0.144] (0.998) -0.084 [-0.077] (0.040) 0.107 [-0.134] (0.928)
ia 0.673 [-0.164] (1.000) 0.682 [-0.201] (1.000) 0.016 [-0.097] (0.991) 0.320 [-0.152] (0.999)
qmj 0.681 [-0.257] (0.994) 0.647 [-0.282] (0.975) -0.089 [-0.099] (0.059) -0.023 [-0.134] (0.353)
bab 0.012 [-0.039] (0.774) -0.065 [-0.067] (0.052) 0.003 [-0.089] (0.554) 0.091 [-0.149] (0.880)
gp -0.131 [-0.080] (0.004) -0.183 [-0.110] (0.005) 0.086 [-0.058] (0.999) 0.134 [-0.142] (0.945)
cma 0.574 [-0.178] (1.000) 0.588 [-0.213] (0.997) 0.019 [-0.076] (0.779) 0.216 [-0.137] (0.992)
rmw 0.143 [-0.069] (0.990) 0.133 [-0.102] (0.954) -0.145 [-0.114] (0.021) -0.040 [-0.168] (0.321)
civ -0.274 [-0.144] (0.001) -0.339 [-0.170] (0.002) 0.079 [-0.036] (0.996) 0.120 [-0.109] (0.962)

multiple test multiple test multiple test multiple test

min [-0.370] (0.000) [-0.407] (0.000) min [-0.164] (0.075) [-0.264] (0.179)
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Table B.22: Fama-French 49 Portfolios as Test Assets, Value Weighted
Scaled Intercepts

Test results on 14 risk factors using Fama-French 49 portfolios, 1972-2012. (See Table 1 for the definitions
of risk factors.). The baseline model refers to the model that includes the pre-selected risk factors. We
focus on the panel regression model described in Section 2.2. The metric (i.e., SIvw), which measures
the difference in value weighted scaled absolute regression intercept, is defined in Section 3.5.2.

Panel A: Baseline = No factor Panel B: Baseline = mkt Panel C: Baseline = mkt+qmj

single test single test single test

Factor SIvw 5th-percentile p-value SIvw 5th-percentile p-value SIvw 5th-percentile p-value

mkt -0.580 [-0.307] (0.000)
smb -0.087 [-0.099] (0.071) 0.054 [-0.096] (0.828) 0.270 [-0.060] (1.000)
hml 0.183 [-0.091] (0.991) -0.117 [-0.115] (0.049) 0.207 [-0.140] (0.997)
mom 0.203 [-0.093] (0.997) 0.094 [-0.025] (0.997) 0.151 [-0.059] (0.998)
skew -0.034 [-0.041] (0.071) -0.132 [-0.077] (0.008) 0.026 [-0.062] (0.913)
psl 0.023 [-0.026] (0.926) -0.005 [-0.022] (0.235) -0.033 [-0.029] (0.041)
roe 0.184 [-0.074] (1.000) -0.214 [-0.094] (0.001) 0.062 [-0.040] (0.995)
ia 0.468 [-0.134] (1.000) -0.163 [-0.104] [0.010] 0.278 [-0.107] (1.000)
qmj 0.442 [-0.186] (0.998) -0.295 [-0.118] (0.000)
bab -0.035 [-0.028] (0.034) -0.232 [-0.112] (0.000) 0.165 [-0.089] (0.997)
gp -0.110 [-0.060] (0.007) -0.014 [-0.055] (0.880) -0.039 [-0.113] (0.253)
cma 0.403 [-0.134] (0.998) -0.199 [-0.096] (0.000) 0.165 [-0.105] (0.997)
rmw 0.064 [-0.037] (0.980) -0.277 [-0.138] (0.002) 0.105 [-0.087] (0.992)
civ -0.175 [-0.085] (0.002) 0.078 [-0.034] (0.996) 0.159 [-0.039] (1.000)

multiple test multiple test multiple test

min [-0.308] (0.000) [-0.173] (0.002) [-0.165] (0.698)

10



B.3 Fama-French 25 Portfolios, Value Weighting

We use Fama-French 25 portfolios as test assets. We only examine the value weighted
test statistics. Table 2 in the main paper examines the equally weighted test statistics.

Using Fama-French 25 portfolios and under value weighting, bab is the next factor
identified after the market factor. This contradicts the results under value weighting
either for Fama-French 49 portfolios or individual stocks (i.e., Table 4), for which
qmj is identified as the next factor after the market factor. This contradiction points
to the difficulty in interpreting test results based on different sets of portfolios. A
certain set of portfolios may be biased towards identifying a certain set of factors. To
avoid this bias, we advocate the use of individual stocks.
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Table B.31: Fama-French 25 Portfolios as Test Assets, Value Weighted
Scaled Intercepts

Test results on 14 risk factors using Fama-French 25 portfolio. (See Table 1 for the definitions of risk
factors.). The baseline model refers to the model that includes the pre-selected risk factors. We focus
on the panel regression model described in Section 2.2. The metric (i.e., SIvw), which measures the
difference in value weighted scaled absolute regression intercept, is defined in Section 3.5.2.

Panel A: Baseline = No factor Panel B: Baseline = mkt Panel C: Baseline = mkt+qmj

single test single test single test

Factor SIvw 5th-percentile p-value SIvw 5th-percentile p-value SIvw 5th-percentile p-value

mkt -0.754 [-0.407] (0.000)
smb -0.107 [-0.126] (0.076) 0.057 [-0.193] (0.881) 0.024 [-0.272] (0.805)
hml 0.191 [-0.123] (0.980) -0.076 [-0.370] (0.404) 0.779 [-0.389] (0.999)
mom 0.241 [-0.127] (0.986) 0.355 [-0.102] (0.998) -0.118 [-0.170] (0.104)
skew -0.023 [-0.053] (0.157) -0.258 [-0.148] (0.006) 0.034 [-0.135] (0.801)
psl 0.047 [-0.050] (0.922) -0.033 [-0.042] (0.070) -0.054 [-0.046] (0.034)
roe 0.330 [-0.130] (0.997) 0.349 [-0.123] (1.000) 0.654 [-0.176] (1.000)
ia 0.610 [-0.168] (0.998) 0.274 [-0.283] (0.913) 2.105 [-0.280] (0.978)
qmj 0.724 [-0.249] (0.968) 0.637 [-0.180] (0.997) 1.212 [-0.251] (0.992)
bab 0.028 [-0.039] (0.891) -0.477 [-0.204] (0.000)
gp -0.044 [-0.042] (0.045) 0.700 [-0.249] (0.999) 0.269 [-0.272] (0.958)
cma 0.515 [-0.187] (0.994) -0.039 [-0.306] (0.435) 1.555 [-0.291] (1.000)
rmw 0.160 [-0.094] (0.967) -0.066 [-0.134] (0.128) 0.123 [-0.194] (0.958)
civ -0.241 [-0.124] (0.009) -0.196 [-0.086] (0.002) 0.097 [-0.088] (0.965)

multiple test multiple test multiple test

min [-0.419] (0.000) [-0.406] (0.017) [-0.432] (0.686)
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B.4 Combining Factors

To examine whether combinations of several factors provide better risk factors, we
add two additional factors to the original 14 risk factors. They are hmla = (hml +
ia + cma)/3 and qmja = (qmj + roe + rmw)/3, motivated by the factor correlation
matrix shown in the main paper. Table B.41 and B.42 show the results under the
equally weighted and the value weighted test statistics, respectively.

13



Table B.41: Combining Factors, Equally Weighted Scaled Intercepts

Test results on 16 risk factors using equally weighted individual stocks. (See Table I for the definitions of 14 risk
factors). Besides the factors in Table I, we include two additional factors that are based on combinations of the
original 14 factors. They are hmla = (hml + ia + cma)/3 and qmja = (qmj + roe + rmw)/3. We use individual
stocks from CRSP that cover the 1968–2012 period to test 16 risk factors. A stock needs to have at least 36 monthly
observations (either in the original or the bootstrapped sample) to enter our tests. The baseline model refers to the
model that includes the pre-selected risk factors. We focus on the panel regression model described in Section 2.2. The
two metrics (i.e., SImew and SImed

ew ), which measure the difference in equally weighted scaled mean/median absolute
regression intercept, are defined in Section 3.2.

Panel A: Baseline = No factor Panel B: Baseline = mkt

single test single test single test single test

Factor SImew 5th-percentile p-value SImed
ew 5th-percentile p-value SImew 5th-percentile p-value SImed

ew 5th-percentile p-value

mkt -0.192 [-0.093] (0.003) -0.206 [-0.095] (0.001)
smb -0.081 [-0.081] (0.056) -0.109 [-0.117] (0.061) -0.041 [-0.045] (0.063) -0.062 [-0.052] (0.032)
hml 0.088 [-0.022] (0.983) 0.108 [-0.029] (1.000) -0.021 [-0.030] (0.131) -0.047 [-0.028] (0.014)
mom 0.091 [-0.034] (1.000) 0.110 [-0.044] (1.000) 0.070 [-0.007] (1.000) 0.089 [-0.012] (1.000)
skew -0.008 [-0.031] (0.278) -0.002 [-0.034] (0.478) -0.004 [-0.009] (0.167) -0.003 [-0.013] (0.319)
psl 0.011 [-0.019] (0.920) 0.002 [-0.030] (0.682) 0.001 [-0.004] (0.409) -0.003 [-0.012] (0.237)
roe 0.163 [-0.042] (0.951) 0.187 [-0.064] (1.000) 0.142 [-0.019] (1.000) 0.180 [-0.029] (1.000)
ia 0.264 [-0.040] (1.000) 0.291 [-0.048] (1.000) 0.027 [-0.009] (0.968) 0.015 [-0.015] (0.934)
qmj 0.316 [-0.072] (0.995) 0.358 [-0.090] (0.998) 0.149 [-0.024] (0.972) 0.193 [-0.029] (0.973)
bab -0.006 [-0.039] (0.594) -0.049 [-0.050] (0.107) 0.018 [-0.010] (0.983) -0.014 [-0.017] (0.181)
gp 0.017 [-0.008] (0.529) 0.030 [-0.007] (0.727) 0.023 [-0.005] (0.961) 0.017 [-0.007] (0.790)
cma 0.176 [-0.034] (1.000) 0.199 [-0.035] (1.000) -0.012 [-0.013] (0.057) -0.031 [-0.019] (0.027)
rmw 0.116 [-0.011] (0.986) 0.137 [-0.017] (0.994) 0.040 [-0.014] (1.000) 0.048 [-0.020] (0.975)
civ -0.096 [-0.044] (0.023) -0.130 [-0.062] (0.031) -0.018 [-0.018] (0.052) -0.049 [-0.030] (0.021)

hmla 0.178 [-0.029] (1.000) 0.196 [-0.025] (1.000) 0.002 [-0.021] (0.719) -0.018 [-0.028] (0.135)
qmja 0.252 [-0.025] (1.000) 0.294 [-0.034] (1.000) 0.137 [-0.025] (1.000) 0.181 [-0.034] (1.000)

multiple test multiple test multiple test multiple test

min [-0.098] (0.003) [-0.106] (0.001) min [-0.050] (0.093) [-0.063] (0.041)

Panel C: Baseline = mkt+smb Panel D: Baseline = mkt + smb+hml

single test single test single test single test

Factor SImew 5th-percentile p-value SImed
ew 5th-percentile p-value SImew 5th-percentile p-value SImed

ew 5th-percentile p-value

mkt
smb
hml -0.017 [-0.020] (0.061) -0.040 [-0.025] (0.011)
mom 0.055 [-0.004] (1.000) 0.076 [-0.010] (1.000) 0.026 [-0.005] (1.000) 0.046 [-0.013] (1.000)
skew -0.013 [-0.010] (0.029) -0.015 [-0.013] (0.036) 0.006 [-0.002] (0.463) -0.001 [-0.005] (0.313)
psl 0.011 [-0.002] (0.945) 0.016 [-0.005] (0.970) 0.010 [-0.002] (0.937) 0.007 [-0.005] (0.771)
roe 0.058 [-0.006] (0.987) 0.074 [-0.010] (0.967) 0.072 [-0.004] (1.000) 0.080 [-0.011] (1.000)
ia 0.020 [-0.012] (0.967) 0.008 [-0.013] (0.719) 0.038 [-0.004] (0.975) 0.051 [-0.008] (1.000)
qmj 0.052 [-0.007] (0.976) 0.061 [-0.008] (0.998) 0.128 [-0.004] (0.982) 0.137 [-0.006] (0.971)
bab 0.016 [-0.010] (0.896) -0.014 [-0.013] (0.043) 0.045 [-0.003] (0.989) 0.040 [-0.007] (0.954)
gp 0.022 [-0.003] (0.972) 0.020 [-0.009] (0.951) 0.059 [-0.001] (0.992) 0.055 [-0.006] (0.984)
cma 0.001 [-0.009] (0.341) -0.009 [-0.012] (0.137) 0.022 [-0.002] (0.980) 0.023 [-0.005] (0.967)
rmw -0.009 [-0.019] (0.147) -0.016 [-0.020] (0.086) 0.036 [-0.002] (1.000) 0.043 [-0.006] (0.992)
civ 0.014 [-0.009] (0.981) 0.003 [-0.019] (0.615) 0.015 [-0.008] (0.991) 0.016 [-0.015] (0.981)

hmla 0.008 [-0.016] (0.760) -0.013 [-0.016] (0.093) 0.032 [-0.001] (0.978) 0.039 [-0.005] (1.000)
qmja 0.041 [-0.010] (0.993) 0.047 [-0.010] (1.000) 0.114 [-0.003] (1.000) 0.110 [-0.007] (1.000)

multiple test multiple test multiple test multiple test

min [-0.019] (0.091) [-0.023] (0.005) min [-0.009] (0.981) [-0.014] (0.974)
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Table B.42: Combining Factors, Value Weighted Scaled Intercepts

Test results on 16 risk factors using value weighted individual stocks. (See Table I for the definitions of 14 risk factors).
Besides the factors in Table I, we include two additional factors that are based on combinations of the original 14
factors. They are hmla = (hml+ ia+ cma)/3 and qmja = (qmj+ roe+ rmw)/3. We use individual stocks from CRSP
that cover the 1968–2012 period to test 16 risk factors. A stock needs to have at least 36 monthly observations (either
in the original or the bootstrapped sample) to enter our tests. The baseline model refers to the model that includes
the pre-selected risk factors. We focus on the panel regression model described in Section 2.2. The two metrics (i.e.,
SImew and SImed

ew ), which measure the difference in equally weighted scaled mean/median absolute regression intercept,
are defined in Section 3.2.

Panel A: Baseline = No factor Panel B: Baseline = mkt Panel C: Baseline = mkt+qmj

single test single test single test

Factor SIvw 5th-percentile p-value SIvw 5th-percentile p-value SIvw 5th-percentile p-value

mkt -0.444 [-0.237] (0.000)
smb -0.059 [-0.055] (0.043) 0.018 [-0.046] (0.827) 0.081 [-0.027] (0.979)
hml 0.144 [-0.059] (0.976) -0.038 [-0.051] (0.129) -0.015 [-0.067] (0.617)
mom 0.153 [-0.063] (0.997) 0.130 [-0.012] (0.999) 0.111 [-0.026] (1.000)
skew -0.027 [-0.054] (0.160) -0.044 [-0.034] (0.031) -0.010 [-0.027] (0.197)
psl 0.035 [-0.021] (0.971) 0.016 [-0.011] (0.991) 0.006 [-0.016] (0.791)
roe 0.105 [-0.047] (0.992) -0.079 [-0.046] (0.020) 0.045 [-0.028] (0.978)
ia 0.382 [-0.086] (0.981) -0.042 [-0.049] (0.079) 0.093 [-0.053] (0.956)
qmj 0.363 [-0.111] (0.887) -0.149 [-0.082] (0.003) 0.001 [-0.018] (0.873)
bab -0.048 [-0.033] (0.031) -0.088 [-0.047] (0.007) -0.021 [-0.036] (0.241)
gp -0.082 [-0.039] (0.010) -0.037 [-0.040] (0.078) -0.012 [-0.042] (0.515)
cma 0.314 [-0.110] (0.991) -0.052 [-0.035] (0.029) 0.057 [-0.044] (1.000)
rmw 0.045 [-0.012] (0.931) -0.146 [-0.067] (0.021) 0.130 [-0.025] (0.978)
civ -0.115 [-0.062] (0.003) 0.035 [-0.020] (0.977) 0.005 [-0.016] (0.876)
hmla 0.294 [-0.070] (0.991) -0.012 [-0.051] (0.487) 0.096 [-0.060] (0.987)
qmja 0.222 [-0.072] (1.000) -0.154 [-0.050] (0.002)

multiple test multiple test multiple test

min [-0.237] (0.000) [-0.079] (0.006) [-0.068] (0.782)
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C Liquidity Adjustment

Stocks may be infrequently traded. As a result, a stock’s contemporaneous exposure
to a risk factor may be insufficient to capture its overall exposure to the risk factor.
We therefore include both contemporaneous factors and lagged factors to adjust for
infrequent trading. In our testing framework, we treat a contemporaneous factor and
its lag as a package. So when we construct the null hypothesis to test the incremental
contribution of a new factor to existing factors, we adjust the new factor to not only
existing contemporaneous factors, but also their lags.

Table C.1 and C.2 show the results under equal weighting and value weighting,
respectively. Compared to Table 3 and 4 in the main paper, under equal weighting, the
evidence for hml is weaker after controlling for lagged factors. Under value weighting,
the results are similar to Table 4.
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Table C.1: Individual Stocks as Test Assets, Equally Weighted Scaled In-
tercepts, Controlling for Lagged Factors

Test results on 14 risk factors using equally weighted individual stocks. (See Table 1 for the definitions of risk factors).
We use individual stocks from CRSP that cover the 1968–2012 period to test 14 risk factors. A stock needs to have
at least 36 monthly observations (either in the original or the bootstrapped sample) to enter our tests. The baseline
model refers to the model that includes the pre-selected risk factors. We focus on the panel regression model described
in Section 2.2. The two metrics (i.e., SImew and SImed

ew ), which measure the difference in equally weighted scaled
mean/median absolute regression intercept, are defined in Section 3.2.

Panel A: Baseline = No factor Panel B: Baseline = mkt

single test single test single test single test

Factor SImew 5th-percentile p-value SImed
ew 5th-percentile p-value SImew 5th-percentile p-value SImed

ew 5th-percentile p-value

mkt -0.190 [-0.124] (0.000) -0.215 [-0.134] (0.001)
smb -0.082 [-0.069] (0.039) -0.114 [-0.92] (0.028) -0.033 [-0.027] (0.041) -0.052 [-0.043] (0.013)
hml 0.107 [-0.030] (0.991) 0.122 [-0.039] (0.980) -0.007 [-0.022] (0.318) -0.036 [-0.028] (0.021)
mom 0.127 [-0.032] (1.000) 0.146 [-0.049] (1.000) 0.086 [-0.007] (1.000) 0.106 [-0.014] (1.000)
skew -0.003 [-0.028] (0.341) -0.001 [-0.040] (0.452) 0.005 [-0.008] (0.385) 0.004 [-0.009] (0.436)
psl 0.024 [-0.019] (0.962) 0.019 [-0.029] (0.860) 0.012 [-0.003] (0.694) 0.012 [-0.011] (0.720)
roe 0.190 [-0.072] (0.979) 0.222 [-0.094] (0.969) 0.146 [-0.019] (0.994) 0.187 [-0.027] (0.988)
ia 0.361 [-0.030] (1.000) 0.394 [-0.038] (0.997) 0.070 [-0.004] (0.988) 0.053 [-0.009] (0.990)
qmj 0.340 [-0.090] (0.991) 0.395 [-0.114] (0.973) 0.142 [-0.023] (0.979) 0.179 [-0.034] (1.000)
bab 0.039 [-0.036] (0.980) 0.006 [-0.056] (0.664) 0.060 [-0.003] (0.972) 0.033 [-0.006] (0.972)
gp 0.022 [-0.013] (0.631) 0.043 [-0.009] (0.871) 0.020 [-0.004] (0.883) 0.021 [-0.008] (0.870)
cma 0.225 [-0.042] (0.996) 0.245 [-0.045] (0.985) 0.012 [-0.008] (0.827) -0.018 [-0.013] (0.017)
rmw 0.126 [-0.029] (0.983) 0.147 [-0.040] (0.989) 0.030 [-0.019] (0.995) 0.027 [-0.028] (0.971)
civ -0.086 [-0.048] (0.003) -0.122 [-0.063] (0.002) 0.003 [-0.016] (0.717) -0.020 [-0.020] (0.054)

multiple test multiple test multiple test multiple test

min [-0.136] (0.001) [-0.154] (0.003) min [-0.032] (0.056) [-0.044] (0.016)

Panel C: Baseline = mkt+smb

single test single test

Factor SImew 5th-percentile p-value SImed
ew 5th-percentile p-value

mkt
smb
hml 0.009 [-0.012] (0.444) -0.017 [-0.019] (0.052)
mom 0.078 [0.000] (1.000) 0.097 [-0.009] (1.000)
skew -0.004 [-0.009] (0.246) 0.001 [-0.010] (0.246)
psl 0.024 [0.003] (0.937) 0.024 [-0.001] (0.911)
roe 0.079 [-0.004] (0.989) 0.078 [-0.008] (0.987)
ia 0.077 [-0.003] (0.971) 0.058 [-0.006] (0.993)
qmj 0.072 [0.000] (1.000) 0.075 [-0.005] (0.995)
bab 0.063 [-0.001] (0.853) 0.034 [-0.006] (0.910)
gp 0.018 [-0.006] (0.978) 0.012 [-0.009] (0.558)
cma 0.031 [-0.006] (0.997) 0.008 [-0.008] (0.406)
rmw 0.010 [-0.013] (0.694) -0.000 [-0.014] (0.327)
civ 0.029 [-0.005] (0.980) 0.023 [-0.008] (0.988)

multiple test multiple test

min [-0.017] (0.781) [-0.021] (0.109)

17



Table C.2: Individual Stocks as Test Assets, Value Weighted Scaled Inter-
cepts, Controlling for Lagged Factors

Test results on 14 risk factors using value weighted individual stocks. (See Table 1 for the definitions
of risk factors). We use individual stocks from CRSP that cover the 1968–2012 period to test 14 risk
factors. A stock needs to have at least 36 monthly observations (either in the original or the bootstrapped
sample) to enter our tests. The baseline model refers to the model that includes the pre-selected risk
factors. We focus on the panel regression model described in Section 2.2. The metric (i.e., SIvw), which
measures the difference in value weighted scaled absolute regression intercept, is defined in Section 3.5.2.

Panel A: Baseline = No factor Panel B: Baseline = mkt Panel C: Baseline = mkt+qmj

single test single test single test

Factor SIvw 5th-percentile p-value SIvw 5th-percentile p-value SIvw 5th-percentile p-value

mkt -0.434 [-0.318] (0.000)
smb -0.068 [-0.073] (0.061) 0.002 [-0.062] (0.663) 0.040 [-0.048] (1.000)
hml 0.148 [-0.066] (0.987) -0.030 [-0.049] (0.219) 0.021 [-0.053] (0.991)
mom 0.165 [-0.058] (1.000) 0.142 [-0.020] (0.999) 0.150 [-0.025] (0.968)
skew -0.021 [-0.040] (0.211) -0.032 [-0.044] (0.117) -0.005 [-0.018] (0.342)
psl 0.035 [-0.026] (0.939) 0.029 [-0.016] (0.993) 0.031 [-0.022] (0.985)
roe 0.112 [-0.066] (0.991) -0.085 [-0.054] (0.002) 0.082 [-0.020] (1.000)
ia 0.453 [-0.076] (0.991) -0.012 [-0.051] (0.510) 0.082 [-0.043] (0.990)
qmj 0.332 [-0.133] (0.983) -0.134 [-0.063] (0.003)
bab -0.035 [-0.045] (0.107) -0.052 [-0.045] (0.041) 0.050 [-0.034] (0.983)
gp -0.114 [-0.052] (0.006) -0.057 [-0.041] (0.017) 0.027 [-0.040] (0.981)
cma 0.345 [-0.100] (0.966) -0.028 [-0.042] (0.142) 0.007 [-0.053] (0.963)
rmw 0.055 [-0.024] (0.983) -0.137 [-0.068] (0.008) 0.014 [-0.033] (0.941)
civ -0.100 [-0.067] (0.018) 0.043 [-0.024] (1.000) 0.078 [-0.017] (0.993)

multiple test multiple test multiple test

min [-0.318] (0.002) [-0.078] (0.006) [-0.062] (0.971)
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D Alternative Testing Frameworks

We first illustrate our bootstrapping-based framework within the context of predictive
regressions. We then adapt it to the Fama-Macbeth cross-sectional regressions.

D.1 Predictive Regressions

Suppose we have a T × 1 vector Y of returns that we want to predict and a T ×M
matrix X that includes the time-series of M right-hand side variables, i.e., column i
of matrix X (Xi) gives the time-series of variable i. Our goal is to select a subset of
the M regressors to form the “best” predictive regression model. Suppose we measure
the goodness-of-fit of a regression model by the summary statistic Ψ. Our framework
permits the use of an arbitrary performance measure Ψ, e.g., R2, t-statistic or F-
statistic. This feature stems from our use of the bootstrap method, which does not
rely on asymptotic approximations of the summary statistics to construct the test. In
contrast, FSW need the finite-sample distribution of the R2 statistic to construct their
test. To ease the presentation, we describe our approach with the usual regression
R2.

Our bootstrap-based selection procedure consists of three major steps:

Step I. Orthogonalization Under the Null

Suppose we already selected k (0 ≤ k < M) variables and want to test if there
exists another significant predictor, that is, we are testing among the rest M − k
candidate variables, i.e., {Xk+j, j = 1, . . . ,M − k}. Our null hypothesis is that none
of these candidate variables provides additional explanatory power of Y , following
White (2000) and FSW. The goal of this step is to modify the data matrix X such
that this null hypothesis appears to be true in-sample.

To achieve this, we first project Y onto the group of pre-selected variables and
obtain the projection residual vector Y e,k. This residual vector contains information
that cannot be explained by pre-selected variables. We then orthogonalize the M −k
candidate variables so that no candidate variable is correlated with Y e,k, for the
entire sample. In particular, we individually project Xk+1, Xk+2, . . . , XM onto Y e,k

and obtain the projection residuals Xe
k+1, X

e
k+2, . . . , X

e
M , i.e.,

Xk+j = cj + djY
e,k +Xe

k+j, j = 1, . . . ,M − k, (D.1)

where cj is the intercept, dj is the slope and Xe
k+j is the residual vector. By construc-

tion, these residuals have an in-sample correlation of zero with Y e,k. Therefore, they
appear to be independent of Y e,k if joint normality is assumed between X and Y e,k.
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This is similar to the simulation approach in FSW, in which artificially generated
independent regressors are used to quantify the effect of the multiple testing. Our ap-
proach is different from FSW because we use real data. In addition, we use bootstrap
or block bootstrap to approximate the empirical distribution of test statistics.

We achieve the same goal as FSW while losing as little information as possible for
the dependence structure among the regressors. In particular, our orthogonalization
guarantees that the M − k orthogonalized candidate variables are uncorrelated with
Y e,k in-sample.1 This resembles the independence requirement between the simulated
regressors and the left-hand side variables in FSW. Our approach is distribution free
and maintains as much information as possible among the regressors. We simply
purge Y e,k out of each of the candidate variables and therefore keep all the distri-
butional information among the variables that is not linearly related to Y e,k intact.
For instance, the tail dependency among all the variables — both pre-selected and
candidate — is preserved. This is important because higher moment dependence may
have a dramatic impact on the test statistics in finite samples.2

A similar idea has been applied to the recent literature on mutual fund perfor-
mance. In particular, Kosowski et al. (2006) and Fama and French (2010) subtract
the in-sample fitted alphas from fund returns, thereby creating “pseudo” funds that
exactly generate a mean return of zero in-sample. Analogously, we orthogonalize can-
didate regressors such that they exactly have a correlation of zero with what is left
to explain in the left-hand side variable, i.e., Y e,k.

Step II. Bootstrap

Let us arrange the pre-selected variables into Xs = [X1, X2, . . . , Xk] and the orthog-
onalized candidate variables into Xe = [Xe

k+1, X
e
k+2, . . . , X

e
M ]. Notice that for both

the residual response vector Y e,k and the two regressor matrices Xs and Xe, rows de-
note time periods and columns denote variables. We bootstrap the time periods (i.e.,
rows) to generate the empirical distributions of the summary statistics for different
regression models. In particular, for each draw of the time index tb = [tb1, t

b
2, . . . , t

b
T ]′,

let the corresponding left-hand side and right variables be Y eb, Xsb, and Xeb.

The diagram below illustrates how we bootstrap. Suppose we have five periods,
one pre-selected variable Xs, and one candidate variable Xe. The original time index
is given by [t1 = 1, t2 = 2, t3 = 3, t4 = 4, t5 = 5]′. By sampling with replacement,

1In fact, the zero correlation between the candidate variables and Y e,k not only holds in-sample,
but also in the bootstrapped population provided that each sample period has an equal chance of
being sampled in the bootstrapping, which is true in an independent bootstrap. When we use a
stationary bootstrap to take time dependency into account, this is no longer true as samples on the
boundary time periods are sampled less frequently. But we should expect this correlation to be small
for a long enough sample as the boundary periods are a small fraction of the total time periods.

2See Adler, Feldman and Taqqu (1998) for how distributions with heavy tails affect standard
statistical inference.
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one possible realization of the time index for the bootstrapped sample is tb = [tb1 =
3, tb2 = 2, tb3 = 4, tb4 = 3, tb5 = 1]′. The diagram shows how we transform the original
data matrix into the bootstrapped data matrix based on the new time index.3

[Y e,k, Xs, Xe] =


ye1 xs1 xe1
ye2 xs2 xe2
ye3 xs3 xe3
ye4 xs4 xe4
ye5 xs5 xe5


︸ ︷︷ ︸

Original data matrix

 t1 = 1
t2 = 2
t3 = 3
t4 = 4
t5 = 5

⇒
 tb1 = 3

tb2 = 2
tb3 = 4
tb4 = 3
tb5 = 1



ye3 xs3 xe3
ye2 xs2 xe2
ye4 xs4 xe4
ye3 xs3 xe3
ye1 xs1 xe1


︸ ︷︷ ︸

Bootstrapped data matrix

= [Y eb, Xsb, Xeb]

Returning to the general case with k pre-selected variables and M − k candidate
variables, we bootstrap and then run M − k regressions. Each of these regressions
involves the projection of Y eb onto a candidate variable from the data matrix Xeb. Let
the associated summary statistics be Ψk+1,b, Ψk+2,b, . . . , ΨM,b, and let the maximum
among these summary statistics be Ψb

I , i.e.,

Ψb
I = max

j∈{1,2,...,M−k}
{Ψk+j,b}. (D.2)

Intuitively, Ψb
I measures the performance of the best fitting model that augments

the pre-selected regression model with one variable from the list of orthogonalized
candidate variables.

The max statistic controls for data snooping bias. With M − k factors to choose
from, the factor that is selected may appear to be significant by random chance. We
adopt the max statistic as our test statistic to control for multiple hypothesis testing,
similar to White (2000), Sullivan, Timmermann and White (1999) and FSW. Our
bootstrap approach allows us to obtain the empirical distribution of the max statistic
under the joint null hypothesis that none of the M − k variables is true. Due to
multiple testing, this distribution is very different from the null distribution of the
test statistic in a single test. We make inference by comparing the realized (in the
data) max statistic to this distribution.

Which statistic should we use to summarize the additional contribution of a vari-
able in the candidate list? Depending on the regression model, the choice varies. For
instance, in predictive regressions, we typically use the R2 or the adjusted R2 as the
summary statistic. In cross-sectional regressions, we use the t-statistic to test whether

3The number of bootstrap samples (B) may impact the outcome of the test. While a larger
B usually results in a more accurate test, in reality test accuracy has to be traded off against
computational intensity. Davidson and MacKinnon (2000) show that hundreds of samples usually
suffice to achieve a reasonably accurate test. To be conservative, we set B at 10,000 for our main
results. For simulations, for which computational intensity is a concern, we set B at 1,000.
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the average slope is significant.4 One appealing feature of our method is that it does
not require an explicit expression for the null distribution of the test statistic. It
therefore can easily accommodate different types of summary statistics. In contrast,
FSW focuses only on the R2 statistic and analytically derives the distribution of the
max R2 statistic.

For the rest of the description of our method, we assume that the statistic that
measures the incremental contribution of a variable from the candidate list is given
and generically denote it as ΨI or Ψb

I for the b-th bootstrapped sample.

We bootstrap B = 10, 000 times to obtain the collection {Ψb
I , b = 1, 2, . . . , B},

denoted as (ΨI)
B, i.e.,

(ΨI)
B = {Ψb

I , b = 1, 2, . . . , B}. (D.3)

This is the empirical distribution of ΨI which measures the maximal additional contri-
bution to the regression model when one of the orthogonalized regressors is considered.
Given that none of these orthogonalized regressors is a true predictor in population,
(ΨI)

B gives the distribution for this maximal additional contribution when the null
hypothesis is true, i.e., the null of no predictability of the M − k candidate variables
is true. (ΨI)

B is the bootstrapped analogue of the distribution for maximal R2’s in
FSW. Similar to White (2000) and advantageous over FSW,5 our bootstrap method
is essentially distribution-free and provides a convenient and accurate approach to
calculate the distribution of the test statistic through sample perturbations.6

Our bootstrap sample has the same number of time periods as the original data.
This allows us to match the sampling uncertainty of the original data with the boot-
strapped sample. When there is little time dependence in the data, we simply treat
each time period as the sampling unit and sample with replacement. When time
dependence is an issue, we use a block bootstrap, as explained in detail in the on-line
appendix. In either case, we only resample the time periods. We keep the cross-
section intact to preserve the contemporaneous dependence among the variables.

4In cross-sectional regressions, sometimes we use the average pricing errors (e.g., mean absolute
pricing error) as the summary statistic. In this case, Ψeb represents the minimum among the average
pricing errors for the candidate variables.

5We are able to generalize FSW in two important ways. First, our approach allows us to
maintain the distributional information among the regressors, helping us avoid the Bonferroni type
of approximation in equation (3) of FSW. Second, even in the case of independence, our use of
bootstrap takes the sampling uncertainty into account, providing a finite sample version of what is
given in equation (2) of FSW.

6By treating the data as if they were the “population”, the bootstrap allows us to obtain the
exact distribution of the test statistic under this population with arbitrary accuracy by having a
sufficiently large number of bootstrap iterations. It also yields an approximation to the distribution
of the test statistic for the actual underlying population. Under regularity conditions, such an
approximation is usually at least as accurate as the approximation obtained through first-order
asymptotic theory (see, e.g., Horowitz et al. 2001).
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Step III: Hypothesis Testing and Variable Selection

Working on the original data matrix X, we can obtain a ΨI statistic that measures
the maximal additional contribution of a candidate variable. We denote this statistic
as Ψd

I . Hypothesis testing for the existence of the (k + 1)-th significant predictor
amounts to comparing Ψd

I with the distribution of ΨI under the null hypothesis, i.e.,
(ΨI)

B. With a pre-specified significance level of α, say 5%, we reject the null if Ψd
I

exceeds the (1− α)-th percentile of (ΨI)
B, that is,

Ψd
I > (ΨI)

B
1−α, (D.4)

where (ΨI)
B
1−α is the (1− α)-th percentile of (ΨI)

B.

The result of the hypothesis test tells us whether there exists a significant predictor
among the remaining M − k candidate variables, after taking multiple testing into
account. If the decision is positive, we declare the variable with the largest test
statistic (i.e., Ψd

I) as significant and include it in a now augmented list of pre-selected
variables. We then start over from Step I to test for the next predictor, if not all
predictors have been selected. Otherwise, we terminate the algorithm and conclude
that the pre-selected k variables are the only ones that are significant.

D.2 Fama-MacBeth Regressions

D.2.1 Intuition

Our method can also be adapted to test factor models in cross-sectional regressions.
We use the Fama-MacBeth regression (Fama and MacBeth, 1973) as an example.

One hurdle in applying our method to FM regressions is the time-varying slopes
in cross-sectional regressions. In particular, separate cross-sectional regressions are
performed for each time period to obtain a collection of cross-sectional regression
slopes. We test the significance of a factor by looking at the time averaged cross-
sectional slope coefficient. Therefore, in the FM framework, the null hypothesis is
that the slope is zero in population. We adjust our method such that this condition
exactly holds in-sample for the adjusted regressors.

First, we need to orthogonalize. Suppose we run a FM regression on a baseline
model and obtain the panel of residual excess returns. In particular, at time t, let the
vector of residual excess returns be Yt. We are testing the incremental contribution
of a candidate factor in explaining the cross-section of expected returns. Let the
vector of risk loadings (i.e., β’s) for the candidate factor be Xt. Suppose there are
nt assets in the cross-section at time t so the dimension of both Yt and Xt is nt × 1.
Notice that nt can be time-dependent as it is straightforward for our method to
handle unbalanced panels. In a typical FM regression, we would project Yt onto Xt.
For our orthogonalization to work, we reverse the process, similar to what we do
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in predictive regressions. More specifically, we stack the collection of Yt’s and Xt’s
into two column vectors that have a dimension of

∑T
t=1 nt × 1, and run the following

constrained regression model:
X1

X2
...
XT


∑T

t=1 nt×1

=


φ1

φ2
...
φT


∑T

t=1 nt×1

+ ξ1×1 ·


Y1
Y2
...
YT


∑T

t=1 nt×1

+


ε1
ε2
...
εT


∑T

t=1 nt×1

,

(D.5)
where φt is the constant vector of intercepts for time t, ξ1×1 is a scalar, and [ε′1, ε

′
2, . . . , ε

′
T ]′

is the vector of projected regressors that will be used in the follow-up bootstrap anal-
ysis. This is a constrained regression as we have a single regression slope (i.e., ξ)
throughout the sample. Had we allowed different slopes across time, we would have
the usual unconstrained regression model where Xt is projected onto Yt period-by-
period. Having a single slope coefficient is key for us to achieve the null hypothesis
in-sample for the FM model.

Alternatively, we can view the above regression model as an adaptation of the
orthogonalization procedure that we use in predictive regressions. It pools returns
and factor loadings together to estimate a single slope coefficient. What is different,
however, is the use of separate intercepts for different time periods. This is natural
since the FM procedure allows time-varying intercepts and slopes. To purge the
variation in Yt’s out of Xt’s, we need to allow for time-varying intercepts as well.
Mathematically, the time-dependent intercepts allow the regression residuals to sum
up to zero within each period. This property proves very important in that it allows
us to form the FM null hypothesis in-sample, as we shall see later.

Next, we scale each residual vector ε by its sum of squares ε′ε and generate the
orthogonalized regressor vectors:

Xe
t = εt/(ε

′
tεt), t = 1, 2, . . . , T. (D.6)

These orthogonalized regressors are the FM counterparts of the orthogonalized regres-
sors in predictive regressions. They satisfy the FM null hypothesis in cross-sectional
regressions. In particular, suppose we run cross-sectional OLS with these orthogonal-
ized regressor vectors for each period:

Yt = µt + γtX
e
t + ηt, t = 1, 2, . . . , T, (D.7)

where µt is the nt × 1 vector of intercepts, γt is the scalar slope for the t-th period,
and ηt is the nt×1 vector of residuals. We show in the next section that the following
FM null hypothesis holds in-sample:

T∑
t=1

γt = 0. (D.8)
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The above orthogonalization is the only step that we need to adapt to apply our
method to the FM procedure. The rest of our method follows for factor selection in
FM regressions. In particular, with a pre-selected set of right-hand side variables, we
orthogonalize the rest of the right-hand side variables to form the joint null hypothesis
that none of them is a true factor. We then bootstrap to test this null hypothesis.
If we reject, we add the most significant one to the list of pre-selected variables and
start over to test the next variable. Otherwise, we stop and end up with the set of
pre-selected variables.

D.2.2 Proof

The corresponding objective function for the regression model in (D.5) is given by:

L =
T∑
t=1

[Xt − (φt + ξYt)]
′[Xt − (φt + ξYt)]. (D.9)

Taking first order derivatives with respect to {φt}Tt=1 and ξ, respectively, we have

∂L
∂φt

= ι′tεt = 0, t = 1, . . . , T, (D.10)

∂L
∂ξ

=
T∑
t=1

Y ′t εt = 0, (D.11)

where ιt is a nt × 1 vector of ones. (D.10) says that the residuals within each time
period sum up to zero, and (D.11) says that the Yt’s are on average orthogonal to the
εt’s across time. Importantly, Yt is not necessarily orthogonal to εt within each time
period. As explained in the main text, we next define the orthogonalized regressor
Xe
t as the rescaled residuals, i.e.,

Xe
t = εt/(ε

′
tεt), t = 1, . . . , T. (D.12)

Solving the OLS (D.7) for each time period, we have:

γt = (Xe
t
′Xe

t )
−1Xe

t
′(Yt − ιtµt), (D.13)

= (Xe
t
′Xe

t )
−1Xe

t
′Yt − (Xe

t
′Xe

t )
−1Xe

t
′ιtµt, t = 1, . . . , T. (D.14)

We calculate the two components in (D.14) separately. First, notice Xe
t is a rescaled

version of εt. By (D.10), the second component (i.e., (Xe
t
′Xe

t )
−1Xe

t
′ιtµt) equals zero.

The first component is calculated as:

(Xe
t
′Xe

t )
−1Xe

t
′Yt = [(

εt
ε′tεt

)′(
εt
ε′tεt

)]−1(
εt
ε′tεt

)′Yt, (D.15)

= ε′tYt, t = 1, . . . , T, (D.16)
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where we again use the definition of Xe
t in equation (D.15). Hence, we have:

γt = ε′tYt, t = 1, . . . , T. (D.17)

Finally, applying (D.11), we have:

T∑
t=1

γt =
T∑
t=1

ε′tYt = 0.
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E Model Discussion

E.1 Bootstrapped Hypothesis Testing

Across the three different scenarios (i.e., predictive regressions, panel regressions, and
Fama-MacBeth cross-sectional regressions), our orthogonalization works by adjusting
the right-hand side or forecasting variables so they appear irrelevant in-sample. That
is, they achieve the null hypotheses in sample. However, the null varies across the
regression models. As a result, a particular orthogonalization method that works in
one model may not work in another model. For instance, in the panel regression
model the null is that a factor does not help reduce the cross-section of pricing errors.
In contrast, in Fama-MacBeth type of cross-sectional regressions, the null is that the
time averaged slope coefficients is zero. Orthogonalizing factors as what we do in
panel regressions, while keeping the time-series regression intercepts intact and thus
helping achieve the null in panel regressions, will not achieve the desired null (i.e., a
time averaged slope coefficient of zero) in the FM regressions.

Our method builds on the statistics literature on bootstraping. Jeong and Mad-
dala (1993) suggest that there are two uses of the bootstrap approach that can be
justified both theoretically and empirically. First, the bootstrap method provides a
way to conduct statistical analysis (e.g., hypothesis tests, confidence intervals, etc.)
when asymptotic theory is not tractable for certain models.7 Second, even when
asymptotic theory (or finite sample distribution under normality) is available, it may
not be accurate in smaller samples.8

Our approach solves at least two problems. First, it is a daunting task to derive
asymptotic distributions given the complicated structure of the cross-section of equity
returns, e.g., unbalanced panel, cross-sectional dependency, number of firms is large
relative to the number of time periods, etc. Second, as we mentioned previously, the
GRS test is distorted when the returns for test portfolios are non-normally distributed.
This problem is likely to be even worse given our use of individual stocks as test
assets. Our bootstrap method allows us to overcome these difficulties and conduct
robust statistical inference.

More specially, our method falls into the category of the nonparametric bootstrap
that is routinely used for hypothesis testing. Hall and Wilson (1991) provide two
valuable guidelines. The first, which can have a large impact on test power, is that
bootstrap resampling should be done in a way that reflects the null hypothesis, even

7This is particularly relevant for our analysis that uses the max statistic. Important examples in
the finance literature include Kosowski, Timmermann, Wermers, and White (2006) and Fama and
French (2010).

8For other references on bootstrapping and its applications to financial time series, see Li and
Maddala (1996), Veall (1992, 1998), Efron and Tibshirani (1993), and MacKinnon (2006). In our
context, for example, Affleck-Graves and McDonald (1989) evaluate the finite sample performance
of the GRS test under non-normality.
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if the true hypothesis is distant from the null.9 The second is to use pivotal statistics,
that is, statistics whose distributions do not depend on unknown parameters.10

The design of our tests closely follows these principles. Take our panel regression
model as an example. The first step orthogonalization, which is core to our method,
ensures that the null hypothesis that a factor has no explanatory power for the cross-
section of expected returns is exactly achieved in-sample. Our method therefore
abides by the first principle and potentially has a higher test power compared to
alternative designs of the hypothesis tests. In addition, when constructing the test
statistics corresponding to the panel regression model, we make sure that pivotal
statistics (e.g., t-statistics of the regression intercepts) are considered along with
other test statistics.

E.2 “Useful” Factors

To provide some context for our paper in the existing literature, we first clarify what
we mean by claiming that a risk factor is “useful” in explaining the cross-section of
expected returns. Using our notation for panel regressions from the previous session,
let a and a+ be the vector of the regression intercepts for the baseline model and the
augmented model (‘+’). Our null hypothesis is:

H0 : a+ = a,

against the alternative hypothesis,

Ha : a+ 6= a.

Our method allows us to exactly achieve the null hypothesis in-sample by adjusting
the regressors that are in the augmented model but are not in the baseline model.
Under this hypothesis, we can simulate to find the distribution of any test statistic
that involves the estimates of a+ and a. The particular test statistics we examine
later — consistent with our goal of identifying risk factors that help explain the
cross-section of expected returns — are the ones that calculate the reduction in the
averaged (equally weighted or value weighted) absolute intercept of the augmented

9Young (1986), Beran (1988) and Hinkley (1989) discuss the first guideline in more detail.
10To give an example of the use of pivotal statistics in bootstrap hypothesis testing, suppose our

sample is {x1, x2, . . . , xn} and the hypothesis under test is that the population mean equals θ0, i.e.,

H0 : θ = θ0. A test statistic one may want to use is θ̂∗ − θ0, where θ̂∗ =
∑n

i=1 xi/n is the sample
mean. However, this statistic is not pivotal in that its distribution depends on the population
standard deviation σ, which is an unknown parameter. According to Hall and Wilson (1991), a

better statistic is to divide θ̂∗− θ0 by σ̂∗, where σ̂∗ is the standard deviation estimate. The new test
statistic (θ̂∗ − θ0)/σ̂∗ is an example of a pivotal test statistic.
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model relative to the baseline model. A positive reduction is regarded as evidence
inconsistent with the null hypothesis.11

Suppose the augmented model has one additional factor relative to the baseline
model. We consider it a “useful” risk factor (in addition to factors in the baseline
model) if we reject the null hypothesis. More specifically, in the language of the
expected return beta representation, a risk factor is considered useful if, relative to
the baseline model, the inclusion of the risk factor in the baseline model helps reduce
the magnitude of the cross-section of intercepts under the baseline model.

Our definition of a useful risk factor is consistent with Gibbons, Ross and Shanken
(1989) under their assumption (or null hypothesis) that the augmented model is
correctly specified, that is, a+ = 0. Under this assumption, the GRS approach would
declare all factors in the augmented model necessary in explaining the cross-section of
expected returns, hence useful risk factors. In our framework, given that we adopt a
sequential selection procedure, all factors in the baseline model are already declared
useful. Hence, a+ = 0 would imply that dropping the candidate factor from the
augmented model will generate a non-zero intercept under the baseline model (i.e.,
a 6= 0), which would be considered as evidence against the null hypothesis (i.e., it is
better to include the candidate factor in the augmented model).12 Hence, a rejection
of the null hypothesis in our framework would identify the factor as useful, the same
as in the GRS framework.

While the GRS approach is a model misspecification test and relies on the null
hypothesis of a+ = 0, our test is anchored around the less ambitious null of a+ = a,
that is, the augmented model does not improve on the baseline model. Given the fact
that hundreds of potential risk factors have been discovered and that we use individual
stocks as test assets, it seems unlikely for one to stumble upon a correctly specified
(augmented) model, that is, a+ = 0 for the cross-section of individual stocks.13 Our
approach is potentially more useful than GRS in that we do not require a correctly
specified model, but instead look for any improvement the augmented model may
have upon the baseline model.14

While our discussion above draws on the GRS framework to define a factor as
useful from a risk perspective, recent papers by Stambaugh and Yuan (2016) and

11Notice that we are focusing on a one-sided test: only when there is a significant positive reduc-
tion in the averaged absolute intercept will we reject the null hypothesis. This is consistent with our
goal of identifying risk factors that help explain the cross-section of expected returns.

12In the rare case where the factor is redundant in the sense that the pseudo factor (as defined in
the previous section) is the same as the original factor, our method will declare the factor useless.

13Several issues make it difficult for us to find a correctly specified model for the cross-section
of individual stocks. First, given the hundreds of factors discovered, it is currently infeasible to
examine all the possible combinations of factors. Second, there might be omitted variables in that
some useful risk factors may have not been discovered yet. Third, due to microstructure noise,
certain stocks may not be fairly priced even if we have identified all the relevant risk factors.

14See Harvey (2017) for a related discussion of how improbable null hypotheses affect hypothesis
testing.
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Kozak, Nagel, and Santosh (2017) show that mispricing variables can also be disguised
as “risk factors” to explain expected stock returns. Therefore, without taking a stand
on the nature of the factor (i.e., either risk-based or mispricing-based), a useful factor
in our framework should be interpreted as a factor whose factor loadings help explain
the cross-section of stock returns based on our test statistics.

Finally, note that our discussion above is geared towards tests for which the left-
hand assets do not necessarily include the right-hand factors, e.g., in our main appli-
cation where we use individual stocks as test assets. When the left-hand assets span
the right-hand factors, Barillas and Shanken (2017) provide a simple way to compare
competing models. See our extensive discussion below for the relation between our
approach and Barillas and Shanken (2017).

E.3 Multiple Hypothesis Testing

Several extant papers also make attempts to control for multiple hypothesis testing
in factor tests. Harvey, Liu, and Zhu (2016) explore several statistical methods that
aim to control the FWER or alternative definitions of error rates (e.g., the false
discovery rate, which is the expectation of the fraction of false discoveries among
all discoveries, denoted as FDR). Feng, Giglio, and Xiu (2019) propose a two-stage
LASSO approach that asymptotically selects the correct model with probability one.
In contrast to these papers, our reliance on White (2000)’s bootstrap approach allows
us to control the FWER in finite samples.15 We believe the finite-sample perspective
of our method is particularly attractive given the number of factors discovered is
likely a function of T (the number of time periods, see the evidence in Harvey, Liu,
and Zhu, 2016, and Harvey and Liu, 2019), which may complicate the asymptotic
analysis of LASSO-based approaches. In addition, similar to the goal of White (2000),
our bootstrap-based approach is straightforward to use and applicable to a variety of
situations on factor tests. Successful applications of White (2000)’s idea in finance
research includes Sullivan, Timmermann, and White (1999), which control for data-
snooping bias in testing technical trading rules, and Fama and French (2010), which
evaluate mutual fund performance by controlling for a large number of tests in the
cross section. Tests of factor models face similar challenges to these two areas of
research given the concern about data snooping bias.

E.4 Sequential Tests

Our framework allows one to sequentially build up the factor model. The sequential
nature of our test implies that the final factor set we arrive at is path dependent
and may not converge to the underlying true model with a probability of one, if such

15This is true up to the precision offered by the bootstrap approximation to the true data gener-
ating process.
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a model exists. This is well-known issue in statistics and the typical solution is to
invoke model selection consistent criteria such as the Akaike information criterion
(AIC) or the Bayesian information criterion (BIC). In the context of the literature on
factor tests, Kogan and Tian (2017) explore permutation tests for all combinations of
five-factor models among a given set of factors and find that the five-factor model in
Fama and French (2017) is far from being the optimal combination when compared to
alternative five-factor models. Whereas Kogan and Tian (2017) constrain themselves
to five-factor models, alternative ways of searching through the entire model space
have been proposed by Barillas and Shanken (2018) and Chib, Zeng, and Zhao (2019).

Bearing in mind the potential selection inconsistency of our approach, one ad-
vantage of having a sequential model is to have a clear ordering of the importance
of the variables being selected at each stage of our tests. This may make it easier
to interpret the test outcome from an economic standpoint. For example, suppose
two factors, when combined together, subsume the explanatory power of the market
factor. As a result, the market factor may never be selected for the final model when
all combinations of factors are exhausted. In our framework, however, if the mar-
ket factor dominates each of the other two factors and survives the multiple testing
threshold, it will be selected for the final model. This is indeed what we find in our
empirical analysis. Our approach is thus consistent with the practice in economic
research where pre-established results are weighed heavily and controlled for in sub-
sequent research, regardless of whether pre-established results survive the search of
the best performing model when all results enter on an equal footing. In general, the
convenience and interpretability of sequential methods prompts the model selection
literature in statistics to bifurcate into two areas of research: one is the sequential
approach that allows one to build up increasingly complex models,16 and the other
is the theoretically more appealing approach that aims to select the true model with
a probability converging to one. From this perspective, the recent development of
factor tests mirrors this bifurcation: whereas our paper sequentially builds up the
factor model, the aforementioned papers seek to find the best combination of factors.
We therefore view our approach as complementing Kogan and Tian (2017), Barillas
and Shanken (2018) and Chib, Zeng, and Zhao (2019).

We also want to point out that whether or not our approach is sequential does not
affect the validity of our approach at each stage of our test, i.e., does the best factor
among a group of factors survive the multiple-testing adjusted statistical threshold
(possibly with the presence of pre-existing factors)?

Having said this, when two variables are close in performance at a certain stage of
our test, whether or not one variable is selected versus the other does raise the concern
about its potential impact on the selection of additional factors. In such cases, we
experiment with selecting the second best and examine its impact on the subsequent
selection. We illustrate how this can be done with examples in our empirical analysis.

16Examples in the regression context include forward stepwise linear regression, least angle re-
gression, and the ever-active path in LASSO regression.
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E.5 Related Literature

The GRS Test Our first contribution is to extend the insights of Gibbons, Ross
and Shanken (GRS, 1989) by proposing a new framework that is applicable to a large
collection of assets. Our method can be applied to portfolios or individual assets. For
a long time, the literature has struggled with defining the appropriate test portfolios.
Indeed, it is confusing to find that, for example, size and book-to-market “work” on
portfolios sorted by size and book-to-market but these same factors do not “work”
when under a different portfolio sorting variable. Indeed, there are hundreds (if not
thousands) of different ways to form portfolios.

We advocate the use of individual assets which leads to a much larger dimension
of the cross-section than the time-series. While a large cross-section of assets present
a challenge to the GRS statistic, our framework allows for a larger cross-section than
time-series by sidestepping the estimation of the large dimensional residual covariance
matrix in the GRS statistic. Importantly, we provide bootstrap-based inference to
our test statistics, which no longer follow a standard F -distribution (as for the GRS
statistic) when we use alternative weighting schemes to weight the cross-section of
pricing errors.

We are aware that our testing framework may have ambiguous implications for
certain assets. For example, suppose the baseline model is a constant and the aug-
mented model is the CAPM. Suppose for a certain stock A, its excess return is 10%
per annum, which would be its regression intercept under the baseline model. To test
the market factor, our approach looks at the difference in absolute intercept between
CAPM and the baseline model. A significant reduction of the absolute intercept
by CAPM would be regarded as evidence against the null model (i.e., a constant).
Notice that under the GRS null hypothesis that a+ = 0 (i.e., the market factor is
mean-variance efficient), the sign of our test statistic would be unambiguous for stock
A: the 10% premium under the baseline model should be completely absorbed by the
market factor under CAPM, suggesting a 10 percentage point reduction in absolute
intercept. When a+ = 0 is not true for CAPM, it is possible that asset A may have
an increase in absolute intercept with the inclusion of the market factor even if the
market factor is a useful risk factor (e.g., the market factor is one of the factors for
the underlying multi-factor model). The reason is that there are other factors in
the underlying multi-factor model in addition to the market factor that also carry
a premium. In essence, this is a omitted variable problem that affects not only our
model, but also most asset pricing tests, including both cross-sectional and time-series
tests.17 We believe that our tests are more robust to omitted variables than several
existing methods in that it is more plausible to think that the augmented model (i.e.,
CAPM in our example) helps reduce the absolute intercepts for the majority of assets
than that the augmented model achieves a+ = 0 for the cross-section of individual
stocks for both the GRS approach and the cross-sectional approach.

17See, e.g., Jagannathan and Wang (1998), Shanken and Zhou (2007), Kan and Robotti (2008,
2009), Kleibergen (2009), Kleibergen and Zhan (2014), and Giglio and Xiu (2019).
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Having defined what we mean by a useful factor, we discuss two related issues in
greater detail. First, what do we use as test assets and why would they matter to the
identification of useful risk factors? Second, what test statistics do we use to quantify
the reduction in alphas? Before we elaborate on these issues, let us again revisit the
GRS approach.

GRS can be used to test whether a certain set of factors is mean-variance efficient
or, as recently advocated by Barillas and Shanken (2017), to compare competing
factor models under certain circumstances. We first focus on the original use of GRS
as a test of the mean-variance efficiency of a factor portfolio.

Given a set of test assets A and a candidate model G, GRS can be interpreted as
the difference between SRm(A,G) and SRm(G), where SRm(A,G) denotes the max-
imum ex post Sharpe-ratio constructed using both A and G and SRm(G) denotes the
maximum ex post Sharpe-ratio using G only (see GRS, Barillas and Shanken, 2017,
Fama and French, 2015b, 2016). Hence, GRS measures the additional contribution
of A relative to G in generating a more efficient mean-variance frontier. While the
GRS approach is useful and intuitive when the cross-sectional dimension is much
smaller than the time-series dimension (i.e., N � T ), its use is limited when the
cross-sectional dimension is close to or even larger than the time-series dimension,
both from a statistical perspective and an economic perspective. Statistically, when
we have more assets than the number of time-series observations, the covariance ma-
trix is not of full rank, so its inverse — which is required for the calculation of the
GRS statistic — does not exist.18 More importantly, the statistical issue with the
GRS statistic alludes to a bigger problem from an economic perspective: when there
are more assets than the number of observations, there always exist arbitrage oppor-
tunities in-sample, implying an infinitely large SRm(A,G) ex post. Hence, tests that
are based on the ex post efficiency of asset returns, such as the GRS statistic, are not
appropriate for applications where the cross-sectional dimension is large.

While a large cross-section of assets present a challenge for the GRS statistic,
recent advances in asset pricing research call for methods that can deal with a large
cross-section of assets. Harvey, Liu and Zhu (2016) document hundreds of anomalies
discovered by the literature. Hence, a comprehensive evaluation of a factor model
would include at least hundreds of test assets, if not more. Hou et al. (2015, 2016)
confront new generations of factor models with hundreds of anomalies, one at a time.
However, one would expect a joint test in the spirit of GRS to be more powerful in
disentangling candidate models. Indeed, as GRS illustrate, a joint test can produce
different test results than a set of univariate tests. Finally, as shown in GRS and
MacKinlay (1987), the manner in which test assets are grouped into portfolios can
affect the value of the test statistic and the conclusion of the test. In this paper, we
advocate the use of individual stocks to avoid these issues with portfolio formation.

18See Bai and Shi (2011) for a recent survey on the estimation of the covariance matrix for finance
applications.

33



Given the difficulty of the GRS in coping with a large cross-section of assets, we
propose a new set of test statistics and provide a flexible approach to make inference.
In essence, any test of a factor model involves the evaluation of the profitability
of strategies that provide risk adjusted returns beyond what the benchmark risk
factors produce. In the case of the GRS approach, this profitability is given by
α′Σ−1α, where α is the cross-section of alphas and Σ is the residual covariance matrix.
However, several issues exist with the use of this metric to evaluate candidate models
when we have a large cross-section of assets. As emphasized by Fama and French
(2015b), ex post estimation of Σ−1 based on portfolios (N � T still holds) leads to
implausible magnitudes of short positions in certain portfolios, casting doubt on the
economic interpretation of α′Σ−1α. When N becomes even larger compared to T , as
we discussed previously, α′Σ−1α may be infinitely large. These issues are well-known
to the literature on portfolio optimization.19 Ex post optimized portfolios provide
upwardly biased estimates of the actual performance of the portfolio that is ex ante
efficient. This bias is potentially very large for our applications. Then, the question is:
if the ex post optimized portfolio (in the mean-variance sense) cannot truly represent
the profitability of strategies that are not accounted for by their exposures to the
benchmark risk factors, what portfolios can?

We provide several test statistics that are both economically meaningful and sta-
tistically sound, while at the same time avoiding the drawbacks of the GRS approach
when applied to a large number of test assets.20

The general idea behind our test statistics is to examine the weighted average of
the cross-section of absolute alphas, with the weights pre-determined and capturing
economically motivated moments of alphas.21 We explore three specifications for
weights: equal weighting, weights being the residual standard deviations from a factor
model regression, and market capitalization weighted residual standard deviations.
Compared to the weighting scheme in the GRS approach, our method pays more
attention to the first moment of returns than the second moments, in particular the
cross correlations among the assets. We believe that this is appropriate in our context

19See, e.g., Green and Hollifield (1992), Ledoit and Wolf (2003), Jagannathan and Ma (2003),
and DeMiguel, Garlappi, Nogales, and Uppal (2009).

20Other papers that extend the idea of the GRS approach include Shanken (1990) and MacKinlay
and Richardson (1991). Shanken (1990) examines the conditional efficiency of benchmark factors
using size and industry portfolios. He pays particular attention to time-varying betas and conditional
heteroskedasticity by using observable state variables as instruments to model betas and residual
variances. MacKinlay and Richardson (1991) develop tests of unconditional mean-variance efficiency
using the GMM (Generalized Method of Moments) framework, which is robust to nonnormality and
heteroskedasticity in asset returns. Different from these papers, we focus on test statistics that
can be applied to a large cross-section of assets. Our test statistics also control for cross-sectional
dependency and data snooping bias, and allow more flexible weighting schemes of the cross-section
of alphas. These features are difficult to achieve within the frameworks of the above papers that
explore the asymptotic variations of the GRS approach.

21Papers that also examine pricing errors include, e.g., Shanken (1987), Ferson and Harvey (1991),
Geweke and Zhou (1996), and Fama and French (2015a). Different from these papers, our bootstrap-
based method allows us to make statistical inference on moments of the cross-section of pricing errors.
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since the primary concern for the research on factor models is to explain patterns in
the cross-section of expected returns. This is also consistent with the goal of most
investment strategies in practice that focus on the cross-section of alphas. Finally, our
bootstrap-based approach is flexible in providing inference for sophisticated weighting
schemes such as value weighting. This is difficult to achieve for traditional methods
that rely on asymptotic approximations. Given the importance of weighting schemes
for asset pricing tests in general (see, e.g., Cochrane, 2005, Ludvigson, 2011), we
consider the flexibility of our framework in dealing with alternative weighting schemes
crucial in assessing the all-around performance of a factor model.

Our test statistics are economically motivated. The arbitrage pricing theory
(APT) of Ross (1976) shows that one of the important conditions for the expected
return beta pricing representation to hold (relative to a factor model) is the absence
of arbitrage opportunities in an efficient market. Hence, the extent to which arbitrage
opportunities are available is an indication of the performance of a factor model. Our
test statistics focus on alphas, which measure the mispricing of a security relative to
a synthetic asset that is fairly priced, and are thus directly linked to the amount of
arbitrage opportunities in the market.22 Importantly, rather than trying to find the
ex post efficient portfolio that weights the cross-section of alphas by the inverse of the
residual covariance matrix as in the GRS statistic, we only use the diagonal elements
of the residual covariance matrix or the value-weighted diagonal elements to weight
the cross-section of alphas. This helps circumvent the issue of reliably estimating
the inverse of the residual covariance matrix when the number of assets is close to
or larger than the number of time-series observations. From an investment perspec-
tive, while the GRS approach tells us how to achieve the ex post efficient frontier,
it becomes difficult for investors to follow the asset allocation rules dictated by the
GRS approach when the number of assets is large since 1) the GRS statistic implies
implausibly large short positions on certain assets even when N is moderately large;
2) in-sample optimization leads to overfitting, making the in-sample allocation rules
under the GRS approach suboptimal in the out-of-sample.23 Our approach relies on
simple trading strategies that are more accessible to an average investor that seeks
to exploit (statistical) arbitrage opportunities.24

22Arbitrage in our context refers to alpha arbitrage, that is, exploiting the cross-section of mis-
pricing (alphas) through statistical arbitrage.

23See, e.g., Hansen (2009), Ledoit and Wolf (2014), and Paulsen and Söhl (2016).
24Notice that unless an explicit out-of-sample forecasting exercise is performed, all tests are in-

sample in nature and thus not “accessible” to investors from an ex ante investment perspective.
However, if the data were stationary, we would expect the in-sample performance of investment
strategies constructed based on in-sample test statistics to persist in the out-of-sample to some de-
gree. The problem with an approach like the GRS that explores the in-sample optimized portfolio
is that, at least for our application to a large number of individual stocks, in-sample optimization
leads to overfitting and extreme positions in certain stocks, implying potentially a large degree of
deterioration in performance of the optimized portfolio. In contrast, simple investment strategies
that explore the average alpha in the cross-section are likely to experience a smaller degree of deteri-
oration in performance. Existing papers on portfolio optimization have shown considerable evidence
on the severe deterioration of in-sample optimized portfolios. For example, DeMiguel, Garlappi,
and Uppal (2009) show that in-sample minimum variance portfolios are consistently outperformed
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Our test statistics are also related to several existing papers on asset pricing tests.
Geweke and Zhou (1996) use the averaged squared pricing errors from an APT as the
model performance metric and derive its posterior distribution in a Bayesian frame-
work.25 Shanken (1987) derives testable restrictions on the pricing deviation for each
individual asset. Hansen and Jagannathan (1997) and Kan and Robotti (2009) exam-
ine a quadratic form of the cross-section of pricing errors within a GMM framework.
Fama and French (2015a) use similar test statistics to provide informal statistical
inference using characteristics-sorted portfolios. Different from these papers, our fo-
cus in this paper is to provide flexible and rigorous inference on test statistics that
capture the average pricing error for a large cross-section of test assets.

Our framework also builds on important insights from the literature on portfolio
choice. DeMiguel, Garlappi, and Uppal (2009) show that naive portfolio strategies
often dominate strategies that are based on in-sample mean-variance optimization
when taken out-of-sample. Given the difficulty in reliably estimating the residual
covariance matrix, various papers propose shrinkage type of estimators (see, e.g.,
Ledoit and Wolf, 2003, 2004, DeMiguel et al. 2009, Jagannathan and Ma, 2003,
Elton, Gruber, and Spitzer, 2006). As we discussed previously, the evaluation of
asset pricing models go hand in hand with the portfolio choice problem. To the
extent that investors face parameter uncertainty when there are a large number of
assets, simple trading strategies may be more relevant to investors than strategies
implied by an in-sample mean-variance optimizer. As a result, tests based on simple
trading strategies are likely more informative from an economic standpoint than those
based on in-sample optimized strategies.

Our test statistics are also powerful from a statistical perspective. We are well
aware of the fact that in theory, the GRS statistic is the most powerful test statistic in
rejecting a factor model when its assumptions are satisfied. However, in practice, as
shown in Affleck-Graves and McDonald (1990), the contribution of the off-diagonal
elements of the residual covariance matrix is often limited in correctly rejecting a
model. In fact, even with a modest number of assets, they show that the power of the
GRS statistic is often higher when we only use the diagonal elements of the residual
covariance matrix. The issue is likely to be even worse when N approaches T and in
our application N > T . We therefore follow Affleck-Graves and McDonald and focus
on the diagonal elements. Nonetheless, we pay particular attention to the power issue
of our test statistics and provide simulation evidence on the power of our tests.

Reconciling with Barillas and Shanken (2017) Now returning to the questions
raised previously, why do test assets matter in our framework? Let us consider an
example. Suppose we try to compare the performance of two factor models: G1 and

in out-of-sample tests by simply weighted portfolios, even with dozens of well-diversified industry
or characteristic-based portfolios. We would expect the deterioration in performance of in-sample
optimized portfolios to be even worse for our application with a large number of individual stocks.

25Harvey and Zhou (1990) use the full covariance matrix in a similar Bayesian framework as they
only have a dozen test assets.
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G2. G1 is a one-factor model that includes the market factor. G2 is a two-factor
model that includes the market factor and a long-short portfolio that takes positions
in two stocks with extreme returns: one stock generates the highest in-sample mean
return and the other generates the lowest in-sample mean return. To compare G1

and G2, we will use two sets of test assets. One set (S1) only includes three assets:
the market portfolio and the two stocks that have extreme returns in-sample. The
other (S2) includes the entire cross-section of stocks based on which the market factor
is generated. Notice that the factors in G1 and G2 are spanned by either S1 or S2,
satisfying the spanning condition in Barillas and Shanken (2017). Do we expect to
see a different relative performance of model G1 compared to model G2 by using S1

as test assets versus S2?

Barillas and Shanken (2017) argue that there should be no difference in relative
model performance in terms of the GRS statistic as long as the factors in the candidate
models are spanned by test assets. The reason is, given that the GRS statistic can
be (loosely) interpreted as the difference between the maximum ex post Sharpe ratio
constructed using both test assets and the factors (which is the same as the maximum
ex post Sharpe ratio constructed using test assets alone since factors are assumed to
be spanned by test assets) and the maximum ex post Sharpe ratio constructed using
only the factors,26 the relative performance of G1 versus G2 is given by the difference
in the maximum ex post Sharpe ratio between G1 and G2. In the example, since both
G1 and G2 can be spanned by either S1 or S2, the relative performance of G1 versus G2

should be unchanged whether we use S1 or S2 as test assets. Given that G2 includes
the long-short portfolio that performs extremely well in-sample, the maximum ex
post Sharpe ratio of G2 will likely dominate that of G1. Hence, G2 appears to be a
better model than G1 whether we use S1 or S2 as test assets.

For our application, we believe the argument in Barillas and Shanken is prob-
lematic for the following reasons. Since we are looking at the cross-section of indi-
vidual stocks, N is large relative to T . This implies that SRm(S2) (that maximum
ex post Sharpe ratio for assets in S2) will be much larger than either SRm(G1) or
SRm(G2). For the sake of our argument, suppose SRm(S2) = ∞, which holds if
N > T . Then GRS(S2, G1) = SRm(S2) − SRm(G1) = ∞ − SRm(G1) = ∞ and
GRS(S2, G2) = SRm(S2)−SRm(G2) =∞−SRm(G2) =∞.27 Hence, since the GRS
statistic under both G1 and G2 equals infinity, G2 is no better than G1, contrary to
the above argument in Barillas and Shanken (2017). In essence, when both models
imply large values for the GRS statistic (which will likely happen when we have a
large cross-section of assets), the exercise of determining which model is less rejected
in the data is not that meaningful.

26Technically speaking, the GRS statistic adjusts this difference by a factor that captures esti-
mation uncertainty in factor betas.

27We assume that SRm(S2) = ∞ to better illustrate the intuition. All we need is for SRm(S2)
to be much larger than both SRm(G1) and SRm(G2), which is likely to be the case if we have a
large number of assets in S2. However, we do not require N > T .
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Our framework uses a different test statistic than the one proposed in GRS and
thus provides a different perspective on the use of test assets than Barillas and
Shanken (2017). First, instead of using the ex post efficient portfolio, we use the
weighted cross-section of absolute alphas as the test statistic, with the weights being
the residual standard deviations or the value-weighted residual standard deviations.
Notice that while the maximum Sharpe ratio of the ex post efficient portfolio may
as well be infinity (e.g., when N > T ), our test statistic is always well-defined and
captures mispricing relative to a factor model. Second, we use the ratio statistic —
the percentage change in the weighted cross-section of absolute alphas of the aug-
mented model (i.e., G2) relative to that of the baseline model (i.e., G1) — instead of
the difference test statistic in Barillas and Shanken (2017) to compare relative model
performance. This ensures that significant improvement of the augmented model rel-
ative to the baseline model is likely to represent economically meaningful reduction
in the weighted cross-section of absolute alphas. Indeed, relating to the previous
paragraph, while G2 dominates G1 in terms of the in-sample maximum Sharpe ratio
(which will be picked up by the difference test statistic), it offers little help in explain-
ing the bulk of the variation in the cross-section of expected returns for individual
stocks. A ratio-based statistic will likely correctly identify G2 as insignificant.

In our framework, the relative performance of G1 and G2 will depend on the
test assets we use. When S1 is used, since it includes the two extreme stocks that
are used to construct the long-short portfolio in G2, the percentage reduction in the
weighted cross-section of absolute alphas under G2 is likely to be large. Hence, G2 is
likely to be declared the better model. This is analogous to the situation when we
use the Fama-French factors to explain the returns of Fama-French portfolios (which
are sorted on the same information as the factors) — Fama-French factors are likely
to be significant. In contrast, when S2 is used, since the majority of stocks in the
cross-section are unlikely to be related to this ad-hoc long-short portfolio based on
stocks with extreme returns (with the inclusion of the baseline factors in G1, that is,
the market factor), the percentage reduction in the weighted cross-section of absolute
alphas under G2 is likely to be small and statistically insignificant, leading us to
reject G2 as a better model. We believe that our framework leads to a more intuitive
conclusion for our example than Barillas and Shanken (2017): it is highly unlikely that
an ad-hoc long-short portfolio would substantially complement the market factor in
explaining the returns of the cross-section of individual stocks, although it generates
a large Sharpe ratio and thus appears to be able to generate a mean-variance more
efficient portfolio when combined with the market factor.28

28Our argument is not specific to individual stocks. For example, suppose we have two factors.
One (f1) is Berkshire Hathaway’s return minus the riskfree rate (or the extreme long-short portfolio
in our example). The other (f2) is the value strategy (i.e., the Fama-French HML factor). Test
assets are the union of f1 and the ten book-to-market sorted decile portfolios. Based on Barillas
and Shanken (2017), f1 would highly likely be considered as a better factor than f2, given the
extraordinary track record of Berkshire Hathaway. Berkshire Hathaway as a factor, however, lacks
economic foundation and would unlikely be selected in our framework since f1 is unlikely to be
related to a large cross-section of individual stocks.
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The implication of our framework that testing outcomes depend on test assets is
not new to the literature. Pricing errors at the individual firm level may be distorted
at the portfolio level, potentially leading to different test results using portfolios
vs. stocks or using different portfolios (Roll, 1977, Kandel and Stambaugh, 1995,
Ahn, Conrad, and Dittmar, 2003, Fama and French, 2008, Hoberg and Welch, 2009,
Cederburg and O’Doherty, 2015). In addition, there is potentially a loss in efficiency in
using a few selected portfolios rather than a broad cross-section of stocks (Litzenberger
and Ramaswamy, 1979, Ang et al., 2016). Finally, the recent debate on the relative
performance of the new generations of factor models (Hou et al., 2015, 2016, Fama
and French, 2015a, 2018) highlights the important role of test assets in determining
the testing outcomes.

A SDF Interpretation We use the stochastic discount factor (SDF) approach to
offer an alternative way to interpret what we are doing. Let A be the collection of
test assets and suppose it spans the factors in model G. Suppose the true underlying
SDF is M . Let the projection of M on A be Ma = proj(M |A) and let the projection
of M on G be Mg = proj(M |G). Assuming Mg is uniquely determined and given
that G is spanned by A, we must have Mg = proj(proj(M |A)|G) = proj(Ma|G). If
Mg = Ma, then the mean-variance frontier constructed with G will be identical to the
mean-variance frontier constructed with A, in which case G should be declared as a
successful factor model in explaining the returns for assets in A. However, in general
Mg 6= Ma and the discrepancy between Mg and Ma is an indication of the performance
of G is in pricing assets in A. Hansen and Jagannathan (1997) show that evaluating
the distance between Mg and Ma in the space of pricing kernels is equivalent to the
evaluation of the maximum distance between prices of a portfolio’s payoff under the
true model and the proposed model G. For our application, however, the maximum
distance is likely to be very large and will achieve infinity if N > T .29 Moreover,
the asymptotic approximations that provide inference on the Hansen-Jagannathan
distance are not applicable when N > T . In essence, these are attributable to the
fact that the payoff space that includes all the combinations of the returns of assets
in A is too large, to the extent that arbitrage opportunities appear to exist in-sample
when N > T .

Our approach, building on the insights of Hansen and Jagannathan (1997), also
tries to evaluate model G by examining the discrepancy in security price between the
true model and the proposed model. However, instead of searching for the maximum
price discrepancy within a large payoff space — so large that the maximum discrep-
ancy approaches infinity, we pre-select a set of strategies that exploit mispricing in the
market and test the statistical significance of the profitability of these strategies. Our
approach is consistent with Fama and French (2015b)’s argument that the evaluation

29To see this, when N > T , there exist (in-sample) arbitrage opportunities. It is easy to combine
an arbitrage strategy with a portfolio that generates a random payoff into a composite portfolio that
generates a payoff distribution that has a unit L2-norm but has an arbitrarily large price. Hence,
the Hansen-Jagannathan distance is infinity.
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of asset pricing models should be based on portfolio strategies that are economically
meaningful. On the other hand, searching for the maximum price discrepancy as in
Hansen and Jagannathan (1997) for a large set of assets may lead to “error maximiza-
tion”,30 that is, the maximum price discrepancy is picking up unimportant features of
the data due to estimation errors rather than measuring price discrepancies that can
actually be exploited by (statistical) arbitragers. Our approach, which intentionally
focuses on a set of alpha strategies that exploit mispricing, helps alleviate the concern
of error maximization.

Kan and Robotti (KR, 2009) build on Hansen and Jagannathan (1997) and eval-
uate the difference of the Hansen-Jagannathan distance between competing models.
Since we also look at the incremental contribution of a factor model, KR is related to
our paper. However, KR and our paper differ in several dimensions. First, KR rely
on the asymptotic distribution of the Hansen-Jagannathan distance when N is small
and T is large, which diverges from our application. Second, even for N < T , our
bootstrap-based approach allows us to control for cross-sectional dependence (possi-
bly nonparametric) and non-normality in the data, which may result in finite sample
(i.e., in T ) distributions of the test statistics that are substantially different from
those derived under asymptotic approximations. Third, while KR analytically derive
the asymptotic distribution of their test statistic between a baseline model and an
augmented model, it is not clear how to derive this distribution for the max test
statistic when there are multiple competing augmented models. We achieve this and
thus control for data snooping bias through the bootstrap. Finally, while the Hansen-
Jagannathan distance weights pricing errors by a time-invariant matrix (i.e., an iden-
tity matrix or the inverse of the unconditional covariance matrix of returns), more
interesting weighting schemes from an economic standpoint include value weighting,
which is time-varying. Our approach is flexible in dealing with more sophisticated
weighting schemes.

Another related approach is Lewellen, Nagel, and Shanken (LNS, 2010), who
advocate the use of confidence intervals as opposed to traditional p-values for several
test statistics. This avoids the assumption of zero pricing errors for the cross-section
of assets for the traditional p-value-based approaches, and is consistent with our
paper in trying to evaluate the incremental contribution a factor without assuming
a correctly specified model. However, there are important differences between the
two papers. First, while the main point of LNS is that the use of test assets with a
strong factor structure may lead to spurious factors, we demonstrate a similar point
by developing methods that can be applied to a large cross-section of assets that are
not influenced by any particular characteristic sorts. For example, among the several
test statistics examined by LNS, the one that is closest to ours is Shanken (1985)’s
T 2 test statistic, which is akin to the GRS approach in that it evaluates the difference
between the maximum generalized squared Sharpe ratio based on test assets and that
attainable from the factors. Different from the T 2 test statistic, our paper focuses on
pricing errors, driven by both statistical and economic concerns for our application to

30See Michaud (1989).
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a large cross-section of test assets, as we discussed previously.31 Second, we believe
that one important mechanism through which spurious factors can be generated is
data mining. As such, our method explicitly controls for test multiplicity using the
bootstrap and is relevant to several fields in finance where data snooping bias is a
serious concern.

Finally, in the presence of data mining, an issue prominent in the recent literature
on the cross-section of expected stock returns, our approach has a key advantage over
the GRS method. In particular, given two nested models (M : baseline model; Maug:
augmented model), it is not clear how one can make statistical inference to tell apart
these models based on the GRS statistic. As we discussed previously, the issue is that
under the GRS framework, the null of the augmented model Maug is not the same as
M , that is, M is the underlying factor model that is mean-variance efficient. Hence,
we are not able to provide inference on the incremental contribution of Maug to M .
In contrast, our test statistics set M as the null model and evaluate the incremental
contribution of Maug. Importantly, our setup allows us to evaluate the significance
of the maximal contribution of Maug when multiple Maug’s have been tried (with the
same baseline model M), thus controlling for multiple tests. Thus, our formulation
bridges the literature on the cross-section of expected returns (for which we know
factor dredging is a serious concern) and the literature on the bootstrap reality check
(which provides a flexible and robust framework to control for data snooping). We
show how the basic idea of our framework applies to a variety of regression setups
that are commonly used in financial economics.

F Results Based on Sorted Portfolios

F.1 Fama-French 25 Portfolios

31Other test statistics examined by LNS include the cross-sectional R2 and the generalized cross-
sectional R2, which are related to cross-sectional regressions such as the Fama-MacBeth approach.
We show how to adapt the idea of our paper to Fama-MacBeth regressions in the appendix. Thus,
we also provide one way to make robust inference on cross-sectional R2’s.
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Table F.1: Summary Statistics on Fama-French 25 Portfolios, January 1968
- December 2012

Summary statistics on Fama-French 25 portfolios. We
report the mean annual excess returns for Fama-
French size and book-to-market sorted 25 portfolios.

Low 2 3 4 High
Small 0.009 0.078 0.085 0.106 0.120

2 0.039 0.074 0.095 0.101 0.108
3 0.047 0.082 0.082 0.093 0.119
4 0.062 0.061 0.077 0.087 0.090

Big 0.046 0.061 0.053 0.059 0.069

Table F.2: Summary Statistics on Ten Market Beta-Sorted Portfolios, Jan-
uary 1968 - December 2012

Summary statistics on ten market beta-sorted portfolios. We sort
the cross-sectional of stocks each month into ten beta portfolios
based on a rolling five-year market model regression. We report
the mean annual excess returns for these portfolios. The sample
period is from January 1968 to December 2012.

Low 2 3 4 5 6 7 8 9 High
0.009 0.078 0.085 0.106 0.120 0.009 0.078 0.085 0.106 0.120
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Table F.3: Summary Statistics on 90 Low-Turnover Anomaly Portfolios,
January 1968 - December 2012

Summary statistics on 90 anomaly portfolios. For the nine low-turnover
anomalies in Novy-Marx and Velikov (2016), we report the mean annual ex-
cess returns from January 1968 to December 2012. “GP” is gross profitability;
“Val” is value; “ValProf” is the combination of value and gross profitability
calculated as the sum of the univariate ranks for book-to-market and prof-
itability; “AssGr” is asset growth; “Inv” is investment; “Fscore” is Piotroski’s
F-score; and “NI” is net issuance.

Size GP Val ValProf Accruals AssGr Inv Fscore NI
Low 0.106 0.053 0.020 0.011 0.131 0.159 0.152 0.077 0.132

2 0.061 0.080 0.055 0.049 0.120 0.132 0.130 0.075 0.102
3 0.075 0.073 0.072 0.061 0.124 0.117 0.123 0.099 0.098
4 0.070 0.087 0.088 0.071 0.115 0.109 0.119 0.106 0.094
5 0.076 0.085 0.092 0.087 0.097 0.104 0.110 0.106 0.097
6 0.070 0.097 0.096 0.092 0.099 0.094 0.110 0.112 0.104
7 0.073 0.097 0.109 0.107 0.102 0.098 0.097 0.101 0.100
8 0.067 0.0107 0.118 0.127 0.090 0.081 0.091 0.091 0.090
9 0.062 0.112 0.131 0.141 0.090 0.070 0.066 0.072 0.059

High 0.050 0.138 0.163 0.171 0.051 0.010 0.009 0.117 0.001
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We examine sorted portfolios in this section. Table F.1, F.2, and F.3 report
summary statistics for the 25 Fama-French size and book-to-market sorted portfolios,
the ten beta-sorted portfolios, and the 90 low-turnover anomaly portfolios used in
Novy-Marx and Velikov (2016) and Kozak, Nagel, and Santosh (2018).

We first examine the standard 25 size and book-to-market sorted portfolios that
are available from Kenneth French’s on-line data library. The 25 portfolios display the
usual monotonic pattern in mean returns along the size and book-to-market dimension
that we try to explain.

We use the aforementioned test statistics to capture the cross-sectional goodness-
of-fit of a regression model. In addition, we also include the standard GRS test
statistic. However, our othogonalization design does not guarantee that the GRS
test statistic of the baseline model stays the same as the test statistic when we add
an othogonalized factor to the model. The reason is that, while the othogonalized
factor by construction has zero impact on the cross-section of expected returns, it may
still affect the residual covariance matrix. Since the GRS statistic uses the residual
covariance matrix to weight the regression intercepts, it changes as the estimate for the
covariance matrix. We think the GRS statistic is not appropriate in our framework as
its use of the residual covariance matrix to weight the regression intercepts is no longer
optimal and may distort the comparison between candidate models. Indeed, for two
models that generate the same regression intercepts, the GRS test will favor the model
that explains a smaller fraction of variance in returns in time-series regressions.32 To
avoid this potential distortion from the GRS approach, we focus on the two metrics
previously defined that do not rely on a model-based weighting matrix.33

We start by testing whether any of the 14 factors is individually significant in
explaining the cross-section of expected returns. Panel A in Table F.4 presents the
results. The market factor appears to be the best among the candidate factors. It
reduces the mean scaled absolute intercept by 61%, much higher than what the other
factors deliver.

32To see this, the GRS statistic equals α′Σ−1α, where α is the cross-section of alphas and Σ is the
residual covariance matrix. For simplicity, let us take Σ to be a diagonal matrix. Then the higher
the values of the diagonal elements of Σ are, the lower the GRS statistic is.

33It should be emphasized that it is not the GRS test statistic itself, but rather the ill-advised use
of the test for relative model comparison, that may lead to biased comparison of candidate models.
See Fama and French (1993) for a related argument.
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Table F.4: Fama-French 25 Portfolios, Equally Weighted Scaled Intercepts

Test results on 14 risk factors using Fama-French size and book-to-market sorted 25 portfolios. (See Table I
for the definitions of risk factors.). The baseline model refers to the model that includes the pre-selected risk
factors. We focus on the panel regression model described in Section 2.2. The two metrics (i.e., SImew and
SImed

ew ), which measure the difference in equally weighted scaled mean/median absolute regression intercepts,
are defined in Section 3.2. GRS reports the Gibbons, Ross and Shanken (1989) test statistic.

Panel A: Baseline = No factor Panel B: Baseline = mkt

single test single test single test single test

Factor SImew 5th-percentile p-value SImed
ew 5th-percentile p-value GRS SImew 5th-percentile p-value SImed

ew 5th-percentile p-value

mkt -0.607 [-0.340] (0.002) -0.672 [-0.333] (0.000) 4.290
smb -0.209 [-0.243] (0.072) -0.108 [-0.257] (0.215) 4.402 -0.068 [-0.174] (0.251) -0.007 [-0.211] (0.481)
hml 0.189 [-0.100] (0.999) 0.230 [-0.110] (0.997) 4.050 -0.434 [-0.260] (0.000) -0.397 [-0.302] (0.009)
mom 0.224 [-0.108] (0.998) 0.256 [-0.120] (0.998) 4.302 0.218 [-0.071] (0.999) 0.210 [-0.113] (0.985)
skew -0.014 [-0.040] (0.195) 0.007 [-0.053] (0.731) 4.454 -0.116 [-0.085] (0.025) -0.134 [-0.117] (0.039)
psl 0.043 [-0.038] (0.946) 0.054 [-0.044] (0.952) 4.286 -0.038 [-0.034] (0.040) -0.135 [-0.055] (0.004)
roe 0.504 [-0.150] (1.000) 0.470 [-0.144] (0.999) 4.919 0.375 [-0.106] (1.000) 0.366 [-0.137] (0.998)
ia 0.607 [-0.157] (1.000) 0.637 [-0.164] (1.000) 4.553 -0.318 [-0.168] (0.001) -0.262 [-0.206] (0.012)
qmj 0.820 [-0.275] (0.990) 0.806 [-0.273] (0.983) 5.594 0.560 [-0.134] (1.000) 0.898 [-0.173] (1.000)
bab 0.036 [-0.042] (0.952) 0.030 [-0.055] (0.908) 3.718 -0.442 [-0.154] (0.000) -0.447 [-0.179] (0.000)
gp -0.042 [-0.037] (0.039) 0.026 [-0.049] (0.892) 4.096 0.202 [-0.087] (1.000) 0.200 [-0.128] (0.988)
cma 0.450 [-0.143] (1.000) 0.464 [-0.155] (0.999) 4.238 -0.476 [-0.196] (0.000) -0.500 [-0.225] (0.000)
rmw 0.268 [-0.126] (0.991) 0.273 [-0.124] (0.987) 4.325 0.055 [-0.056] (0.991) 0.132 [-0.119] (0.962)
civ -0.281 [-0.140] (0.000) -0.283 [-0.141] (0.002) 4.132 -0.219 [-0.094] (0.001) -0.099 [-0.128] (0.088)

multiple test multiple test multiple test multiple test

min [-0.368] (0.003) [-0.373] (0.000) min [-0.289] (0.001) [-0.342] (0.000)

Panel C: Baseline = mkt + cma

single test single test

Factor SImew 5th-percentile p-value SImed
ew 5th-percentile p-value

mkt
smb -0.232 [-0.353] (0.171) -0.295 [-0.454] (0.188)
hml 0.001 [-0.136] (0.657) 0.013 [-0.230] (0.615)
mom 0.091 [-0.067] (0.981) 0.115 [-0.139] (0.930)
skew 0.005 [-0.058] (0.654) 0.093 [-0.134] (0.896)
psl -0.027 [-0.028] (0.054) 0.222 [-0.069] (0.992)
roe 0.911 [-0.128] (1.000) 1.271 [-0.228] (1.000)
ia 0.382 [-0.106] (1.000) 0.631 [-0.181] (1.000)
qmj 1.381 [-0.153] (1.000) 1.857 [-0.242] (1.000)
bab 0.101 [-0.069] (0.991) 0.080 [-0.153] (0.880)
gp -0.260 [-0.073] (0.061) -0.084 [-0.104] (0.081)
cma
rmw 0.561 [-0.119] (1.000) 0.644 [-0.188] (1.000)
civ -0.160 [-0.100] (0.013) -0.214 [-0.211] (0.049)

multiple test multiple test

min [-0.356] (0.148) [-0.464] (0.253)
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To evaluate the significance of the market factor, we follow our method and or-
thogonalize the 14 factors so they have a zero impact on the cross-section of expected
returns in-sample. We bootstrap to obtain the empirical distributions of the in-
dividual test statistics. We then evaluate the realized test statistics against these
empirical distributions to provide p-values. As shown in Panel A of Table F.4, the
bootstrapped 5th percentile of SImew for the market factor is -0.340. The interpretation
is that bootstrapping under the null, i.e., the market factor has no ability to explain
the cross-section, produces a distribution of increments to the intercept. At the 5th

percentile, there is a percentage reduction in the mean scaled intercept of 34%. The
actual factor reduces the mean scaled intercept by more than the 5th percentile, so
we declare it significant. More precisely, by evaluating the 61% reduction against the
empirical distribution of SImew for the market factor alone, the single-test p-value for
the market factor is 0.002.

To address the multiple testing problem, we bootstrap to obtain the empirical
distribution of the minimum statistic. In particular, following the bootstrap proce-
dure in Section 2, we resample the time periods. For each bootstrapped sample, we
first obtain the test statistic for each of the 14 orthogonalized factors and then record
the minimum test statistic across all 14 statistics. The minimum statistic is the the
largest intercept reduction among the 14 factors. Since all factors are orthogonalized
and therefore have no impact on the cross-section of expected returns, the minimum
statistic shows what the largest intercept reduction can be just by chance and there-
fore controls for multiple testing. It is important that all 14 test statistics are based
on the same bootstrapped sample as this controls for test correlations, as emphasized
by Fama and French (2010). Lastly, we compare the realized minimum statistic with
the bootstrapped distribution of the minimum statistic to provide p-values.

Panel A of Table F.4 shows the results on multiple testing. In particular, the
bootstrapped 5th percentile of SImew for the minimum statistic is -36.8%. By evaluating
the 61% reduction against the empirical distribution of the minimum statistic for
multiple testing, the p-value is 0.003. Therefore, the multiple-test p-value is below
the 5% cutoff. We therefore also declare the market factor significant from a multiple
testing perspective. Across the two metrics we consider, the market factor is the
dominating factor and is significant at 5% level, both from a single-test and a multiple-
test perspective.

One interesting observation based on Table F.4 is that the best factor that is
selected may not be the one with the lowest single test p-value. For instance, in
Panel A of Table F.4 and for SImew, the market factor is the first factor that we select
despite a lower single test p-value for civ. On the surface, this happens mechanically
because the minimum test statistic picks the factor that has the lowest SImew (i.e.,
highest percentage reduction in the mean scaled absolute intercept), not its p-value.
As a result, the market factor, which has a lower SImew, is favored over civ.

On a deeper level, should we use a minimum test statistic that depends on the
p-values instead of the levels of the SImew’s? We think not. The use of SImew allows
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us to put weight on both the economic as well as the statistical significance. This is
especially important for our sequential selection procedure that incrementally identi-
fies the group of useful factors. We give a higher priority to a factor that has a large
reduction in absolute intercept while passing a certain statistical hurdle than a factor
that has a tiny reduction in absolute intercept but having a very small p-value.34

After the market factor is declared significant, we continue to identify the second
risk factor. This time, cma has a multiple testing p-value of 0.001 under SImew and
less than 0.001 under SImedew , and is therefore declared significant. Notice that the
performance of hml is close to that of cma. This is not surprising given that cma and
hml are highly correlated (correlation of 0.71).

After cma is identified and included in the baseline model, we continue to search
for the third factor. This time, gp and smb are the best performing factors among
the remaining factors under SImew and SImedew , respectively. Overall, across the two
test statistics, smb seems to be a better performing factor compared to gp as it is
close to gp under SImew and a lot better than gp under SImedew . Nonetheless, neither
smb nor gp is significant under multiple testing. We therefore terminate the search
and conclude with a two-factor model, i.e., mkt + cma, for portfolios sorted on size
and book to market value.

Overall, our results using equally weighted scaled regression intercepts confirm the
idea that mkt and cma, a factor that is closely related to hml, are helpful in explaining
the cross-section of expected returns of Fama-French 25 portfolios. This may not be
surprising as hml and Fama-French 25 portfolios use the same characteristics to sort
the cross-section of stocks. What is interesting in our results is that cma survives
after mkt is included. smb does not. This suggests that either smb is not a risk
factor that helps explain the cross-section of expected returns for the Fama-French
25 portfolios or the Fama-French 25 portfolios have limited power to identify smb as
a risk factor. As we shall see later, the latter explanation seems more plausible.

Our findings seem to be at odds with past studies that also use the Fama-French 25
portfolios to test the market factor. Most of these studies rely on the two-stage Fama-
MacBeth regression and find that slope estimates from the second stage regressions
are not statistically different from zero. Hence, the market factor is not priced. If
one plots the estimated portfolio average returns against the actual average returns,
one will see a flat line instead of a 45-degree line as one would expect to see if CAPM
holds. In our framework, the market factor is highly significant. Indeed, based on
Panel A of Table F.4, the market factor single-handedly reduces the scaled absolute
regression intercept by about 60%.

34Notice that a different leverage scaling of a factor (i.e., long-short portfolio return) to alter
its volatility will not change the test statistics or the p-values. This is because we run time-series
regressions on the factors. Factor loadings adjust for different scalings. For example, when mkt is
used as the factor, suppose we have a beta estimate of 1.0 for a certain asset. When 2×mkt is used,
the beta estimate will drop to 0.5, offsetting the scaling of mkt. Meanwhile, neither the regression
intercept nor its significance will be affected by the scaling.
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Compared to cross-sectional methods such as the Fama-MacBeth approach, we
provide an alternative framework to select risk factors. When the factor model is
correctly specified (i.e., the beta pricing model is true for the factor model being
tested), both methods seem to work well from a statistical standpoint although our
model seems more powerful in detecting useful risk factors.35 When there is poten-
tially model misspecification, we believe that our approach is likely advantageous over
Fama-MacBeth when there are a large cross-section of assets. First, given the large
N , extreme observations are inevitable at each point in time for cross-sectional meth-
ods and may have undue impact on the inference. In contrast, our approach looks at
regression intercepts that are estimated over a long period of time and is therefore
less affected by extreme observations. In addition, we allow value weighting, which
further alleviates the concern with outliers for small stocks.36 Second, our method
identifies reduction in regression intercepts offered by the augmented model relative
to the baseline model. As a result, the additional factor in the augmented may be
declared useful even if there is still a large regression intercept (in absolute value)
left explained by the augmented model, capturing omitted factors and model mis-
specification. In contrast, cross-sectional methods, by having a common regression
intercept at each point in time, are forcing the cross-section of expected returns to
be completely driven by the factor model, and is therefore more likely to be affected
by model misspecification.

While our results based on Fama-French 25 portfolios are interesting, we are re-
luctant to offer any deeper interpretation given the main drawback of the portfolio
approach: tests based on characteristics-sorted portfolios are likely to be tilted to-
wards factors that are constructed using the same characteristics.37

The GRS test statistic is problematic in our context from a variety of perspectives.
For instance, with mkt as the only factor in the baseline model and by adding the
orthogonalized smb to the baseline model, the GRS is 6.039 (not shown in table),
much larger than 4.290 in Panel A of Table F.4, which is the GRS with mkt as the
only factor. This means that by adding the orthogonalized smb, the GRS becomes
much larger. By construction, the orthogonalized smb has no impact on the regression
intercepts. The only way it can affect the GRS is through the error covariance matrix.
Hence, the orthogonalized factor makes the GRS larger by reducing the error variance
estimates. This insight also explains the discrepancy between SImew and the GRS in
Panel A of Table F.4: mkt, which implies a much smaller mean absolute intercept
in the cross-section, has a larger GRS than bab as mkt absorbs a larger fraction of
variance in returns in time-series regressions and thereby putting more weight on
regression intercepts compared to bab.

35See the appendix for a comparison of test power between our approach and the cross-sectional
approach.

36We discuss extensions of our approach that cope with time-varying risk exposures in our on-line
appendix.

37See our on-line appendix for results that are based on the value-weighted test statistics and
Fama-French 25 portfolios.
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The weighting in the GRS does not seem appropriate for model comparison when
none of the candidate models is expected to be the true model, i.e., the true underlying
factor model that fully explains the cross-section of expected returns. Between two
models that imply the same time-series regression intercepts, it favors the model that
explains a smaller fraction of variance in returns. This does not make sense. We
choose to focus on our proposed metrics that do not depend on the error covariance
matrix estimate.

The way that the GRS test uses the residual covariance matrix to scale regression
intercepts is likely to become even more problematic when we use individual stocks
as test assets. Given a large cross-section and a limited time-series, the residual
covariance matrix will be poorly measured. To make things worse, this covariance
matrix needs to be inverted to obtain the weights for intercepts. As a result, the GRS
test is likely to be very unstable and potentially distorted when applied to individual
stocks.38

Our results about the GRS test resonate with a recent study by Fama and French
(2015b). They find that the GRS test often implies unrealistically large short positions
on certain assets, which does not make economic sense. To explain their findings,
notice that the GRS test can be interpreted as the difference between the Sharpe
ratio constructed using both the left-hand side assets and the right-hand side factors
(call this Sharpe ratio SR1) and the Sharpe ratio using only the right-hand side
factors (call this Sharpe ratio SR2). A rejection is found if SR1 is significantly larger
than SR2. What Fama and French (2015b) find is that certain left-hand side assets
need to take extreme short positions in order to achieve SR1. By imposing short sale
constraints, SR1 is often much smaller, reducing the contribution of the left-hand
side assets to the tangency portfolio formed using the right-hand side factors alone.
This causes us to question the economic usefulness of the GRS test.

Our framework provides an economically meaningful approach to evaluate the
incremental contribution of SR1 over SR2. In a panel regression model, the regression
intercepts capture mispricing for the assets in the cross-section. An investor who is
trying to exploit this mispricing will be long assets that have positive intercepts and
short assets that have negative intercepts. By taking equally-weighted positions in the
cross-section, the abnormal return for her portfolio (that is, returns with factor risks
purged out) equals the equally weighted absolute intercepts plus a residual component
that is the equally weighted average of the regression residuals. When we have a large
cross-section — which will be the case when we use individual stocks as test assets
— the residual component will be small. Therefore, the equally weighted absolute
intercepts captures the abnormal return earned by an investor that tries to exploit
the mispricing of the cross-section of assets relative to a factor model.

While the equally weighted absolute intercepts capture the abnormal returns of
the equally weighted investment strategy, it is important to take the estimation un-

38See Gagliardini et al. (2014) for a similar argument.
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certainty into account by using the standard errors to scale the regression intercepts.
This motivates our test statistics (e.g., SImew) that are based on the scaled intercepts.
As we mentioned before, our test statistics have substantially higher test power com-
pared to tests that are based on the original intercepts.39 Finally, an average investor
in the economy will invest in proportion to the market capitalizations of assets. Hence,
a value-weighted metric may better reflect the economic significance of asset mispric-
ing in the cross-section. We explore this metric in the next section when we use
individual stocks as test assets.

F.2 Beta-sorted Portfolios

Are our results about the market factor specific to the Fama-French 25 portfolios we
use? We construct the commonly used market beta-sorted portfolios to answer this
question. In particular, we sort stocks into ten decile portfolios based on rolling beta
estimates using information in the past 60 months. Table F.2 reports the summary
statistics.

Applying our approach to the beta-sorted portfolios, we still first uncover the im-
portance of the market factor, which singlehandedly reduce the scaled mean (median)
absolute regression intercept by 55.3% (54.6%). After the market factor is identified,
the next factor that stands out is betting-against beta (i.e., bab) — a factor that is
the opposite to the beta strategy. We look into our results and find that after the
market factor is included in the regression analysis, the regression intercepts are neg-
ative for the high-beta portfolio and positive for the low-beta portfolio. The returns
of these portfolios are thus consistent with the prediction of bab. As a result, our
second-stage regression picks up bab. Overall, our results highlight the roles of both
market beta-related factors in driving the returns of beta-sorted portfolios.

Our results offer a different perspective in thinking about the returns of beta-
sorted portfolios in relation to the market beta. Whereas cross-sectional tests usually
find weak evidence on the importance of the market beta using beta-sorted portfo-
lios, we demonstrate the importance of the market factor from a time-series (or panel
regression) perspective. We are not the first to notice this difference. For example,
Bollerslev, Li, and Todorov (2016) use a panel regression setup to establish the sig-
nificance of jump-related market betas. Pukthuanthong, Roll, and Subrahmanyam
(2019) propose a protocol to test candidate factors and advocate the use of the panel
regression approach with individual stocks. Their empirical analysis identifies the
market factor as the predominant risk factor. More recently, Hasler and Martineau
(2019a, b) use panel regressions and find strong evidence consistent with CAPM.
Giglio and Xiu (2019) focus on cross-sectional tests but use an approach that alle-
viates model mis-specification. They find universal evidence for the pricing of the
market beta among a myriad of characteristics-based portfolios. Other recent papers
that rejuvenate the market factor as a risk factor using alternative testing methods

39See Appendix B for results on our simulation study that measures test power.
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include Ahn, Conrad, and Dittmar (2009), Cosemans et al. (2015), and Berk and
Van Binsbergen (2016). Our results therefore add more evidence to this expanding
literature that documents the importance of the market factor.

Table F.5: Beta-sorted Portfolios, Equally Weighted Scaled Intercepts

Test results on 14 risk factors using Beta-sorted decile portfolios. (See Table I for the definitions of risk factors.). The
baseline model refers to the model that includes the pre-selected risk factors. We focus on the panel regression model
described in Section 2.2. The two metrics (i.e., SImew and SImed

ew ), which measure the difference in equally weighted
scaled mean/median absolute regression intercepts, are defined in Section 3.2.

Panel A: Baseline = No factor Panel B: Baseline = mkt

single test single test single test single test

Factor SImew 5th-percentile p-value SImed
ew 5th-percentile p-value SImew 5th-percentile p-value SImed

ew 5th-percentile p-value

mkt -0.553 [-0.301] (0.000) -0.546 [-0.299] (0.000)
smb -0.227 [-0.252] (0.072) -0.209 [-0.235] (0.076) -0.135 [-0.301] (0.253) -0.130 [-0.278] (0.253)
hml 0.146 [-0.087] (0.980) 0.108 [-0.071] (0.974) -0.318 [-0.148] (0.000) -0.409 [-0.171] (0.000)
mom 0.272 [-0.133] (0.995) 0.275 [-0.125] (0.992) 0.361 [-0.113] (1.000) 0.301 [-0.125] (0.994)
skew -0.018 [-0.044] (0.181) -0.036 [-0.051] (0.082) -0.072 [-0.082] (0.064) -0.108 [-0.097] (0.033)
psl 0.039 [-0.040] (0.952) 0.029 [-0.037] (0.930) -0.006 [-0.036] (0.297) -0.026 [-0.041] (0.104)
roe 0.612 [-0.199] (0.998) 0.526 [-0.174] (0.998) 0.898 [-0.184] (0.000) 0.670 [-0.183] (1.000)
ia 0.493 [-0.148] (0.996) 0.442 [-0.137] (0.997) -0.246 [-0.088] (0.000) -0.367 [-0.102] (0.000)
qmj 0.779 [-0.266] (0.976) 0.712 [-0.248] (0.973) 1.056 [-0.225] (1.000) 0.790 [-0.217] (0.999)
bab -0.058 [-0.047] (0.036) -0.094 [-0.060] (0.018) -0.439 [-0.165] (0.000) -0.504 [-0.182] (0.000)
gp -0.015 [-0.030] (0.124) -0.042 [-0.033] (0.035) 0.088 [-0.048] (0.995) 0.034 [-0.046] (0.935)
cma 0.334 [-0.129] (0.994) 0.314 [-0.127] (0.993) -0.412 [-0.120] (0.000) -0.444 [-0.133] (0.000)
rmw 0.302 [-0.156] (0.979) 0.232 [-0.125] (0.975) 0.358 [-0.149] (1.000) 0.174 [-0.116] (0.988)
civ -0.390 [-0.173] (0.002) -0.359 [-0.164] (0.002) -0.343 [-0.184] (0.003) -0.420 [-0.194] (0.001)

multiple test multiple test multiple test multiple test

min [-0.345] (0.000) [-0.334] (0.000) min [-0.322] (0.002) [-0.312] (0.000)

Panel C: Baseline = mkt+bab Panel D: Baseline = mkt + bab+civ

single test single test single test single test

Factor SImew 5th-percentile p-value SImed
ew 5th-percentile p-value SImew 5th-percentile p-value SImed

ew 5th-percentile p-value

mkt
smb -0.431 [-0.546] (0.122) -0.392 [-0.563] (0.164) -0.272 [-0.658] (0.386) -0.310 [-0.710] (0.385)
hml -0.170 [-0.189] (0.070) -0.189 [-0.229] (0.075) -0.147 [-0.166] (0.061) -0.166 [-0.221] (0.079)
mom 0.546 [-0.350] (0.971) 0.493 [-0.391] (0.933) 1.254 [-0.366] (0.999) 1.191 [-0.413] (0.994)
skew -0.017 [-0.108] (0.297) -0.016 [-0.136] (0.310) -0.026 [-0.110] (0.245) -0.002 [-0.157] (0.428)
psl 0.013 [-0.074] (0.751) 0.017 [-0.098] (0.763) 0.158 [-0.091] (0.977) 0.170 [-0.131] (0.950)
roe 1.389 [-0.412] (0.987) 1.219 [-0.439] (0.964) 3.528 [-0.493] (1.000) 3.243 [-0.576] (0.997)
ia -0.108 [-0.103] (0.044) -0.211 [-0.134] (0.023) -0.100 [-0.100] (0.049) -0.291 [-0.145] (0.004)
qmj 1.703 [-0.421] (0.991) 1.460 [-0.464] (0.967) 4.323 [-0.543] (1.000) 3.881 [-0.595] (1.000)
bab
gp 0.145 [-0.096] (0.986) 0.054 [-0.127] (0.893) 0.368 [-0.119] (0.996) 0.317 [-0.157] (0.981)
cma 0.385 [-0.179] (0.001) -0.397 [-0.223] (0.009) -0.390 [-0.176] (0.002) -0.561 [-0.244] (0.002)
rmw 0.450 [-0.339] (0.930) 0.356 [-0.377] (0.880) 1.158 [-0.403] (0.994) 1.012 [-0.448] (0.977)
civ -0.619 [-0.399] (0.008) -0.629 [-0.448] (0.013)

multiple test multiple test multiple test multiple test

min [-0.601] (0.037) [-0.651] (0.062) min -0.673 (0.394) -0.734 (0.246)
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F.3 Low-turnover Anomaly Portfolios

Finally, we consider 90 anomaly portfolios that are used in Novy-Marx and Velikov
(2016) and Kozak, Nagel, and Santosh (2018). These portfolios have low turnover
rates and thus more likely driven by risk-based explanations than mispricing. We
report summary statistics on these portfolios in Table F.3. Note that these 90 port-
folios, while overlapping with the 14 factors we study, do not span our factor space.
As a result, one cannot use the mean-variance spanning test in Barillas and Shanken
(2017) to evaluate the 14 factors. Our main goal for using these portfolios is to show
how our results change in comparison with the previous two sets of portfolios.

Applying our approach to the 90 portfolios, we extract three factors: the market
factor, common idiosyncratic risk (civ) and investment (cma). While civ is also
significant based on our tests with beta-sorted portfolios, it is not under Fama-French
25 portfolios. In contrast, cma is declared significant under Fama-French 25 portfolios
but disappears in tests with beta-sorted portfolios.

Overall, while there seems to be a core set of factors (i.e., market, cma, bab, civ)
that underlie the three sets of anomaly portfolios we study, test results are sensitive
to the construction of the portfolios. This is consistent with previous work such as
Brennan, Chordia, and Subrahmanyam (1998). We therefore focus on tests with
individual stocks in the subsequent sections.
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Table F.6: Low-Turnover Anomaly Portfolios, Equally Weighted Scaled In-
tercepts

Test results on 14 risk factors using 90 low-turnover anomaly portfolios. (See Table I for the definitions of risk factors.).
The baseline model refers to the model that includes the pre-selected risk factors. We focus on the panel regression
model described in Section 2.2. The two metrics (i.e., SImew and SImed

ew ), which measure the difference in equally
weighted scaled mean/median absolute regression intercepts, are defined in Section 3.2.

Panel A: Baseline = No factor Panel B: Baseline = mkt

single test single test single test single test

Factor SImew 5th-percentile p-value SImed
ew 5th-percentile p-value SImew 5th-percentile p-value SImed

ew 5th-percentile p-value

mkt -0.554 [-0.319] (0.001) -0.540 [-0.317] (0.001)
smb -0.256 [-0.248] (0.041) -0.266 [-0.252] (0.033) -0.144 [-0.271] (0.232) -0.154 [-0.281] (0.241)
hml 0.218 [-0.112] (0.993) 0.201 [-0.121] (0.982) -0.236 [-0.106] (0.001) -0.269 [-0.105] (0.001)
mom 0.304 [-0.147] (0.997) 0.298 [-0.148] (0.991) 0.354 [-0.118] (1.000) 0.312 [-0.136] (0.999)
skew -0.005 [-0.043] (0.409) -0.002 [-0.045] (0.468) -0.042 [-0.051] (0.069) -0.040 [-0.058] (0.106)
psl 0.036 [-0.034] (0.942) 0.033 [-0.035] (0.933) -0.022 [-0.031] (0.092) -0.047 [-0.044] (0.043)
roe 0.673 [-0.194] (1.000) 0.643 [-0.197] (0.999) 0.861 [-0.183] (1.000) 0.869 [-0.207] (1.000)
ia 0.631 [-0.161] (1.000) 0.593 [-0.159] (0.999) -0.146 [-0.054] (0.001) -0.166 [-0.067] (0.003)
qmj 0.856 [-0.284] (0.986) 0.825 [-0.285] (0.978) 1.007 [-0.206] (1.000) 0.986 [-0.230] (1.000)
bab 0.072 [-0.043] (0.991) 0.041 [-0.044] (0.961) -0.231 [-0.079] (0.000) -0.275 [-0.086] (0.000)
gp -0.039 [-0.036] (0.040) -0.046 [-0.040] (0.040) 0.054 [-0.036] (0.986) 0.025 [-0.043] (0.900)
cma 0.439 [-0.146] (1.000) 0.433 [-0.151] (0.996) -0.300 [-0.087] (0.000) -0.302 [-0.094] (0.000)
rmw 0.330 [-0.163] (0.995) 0.330 [-0.165] (0.990) 0.330 [-0.125] (1.000) 0.285 [-0.153] (0.994)
civ -0.372 [-0.174] (0.000) -0.387 [-0.174] (0.000) -0.322 [-0.171] (0.001) -0.404 [-0.209] (0.001)

multiple test multiple test multiple test multiple test

min [-0.351] (0.001) [-0.352] (0.001) min [-0.288] (0.028) [-0.319] (0.007)

Panel C: Baseline = mkt+civ Panel D: Baseline = mkt + civ+cma

single test single test single test single test

Factor SImew 5th-percentile p-value SImed
ew 5th-percentile p-value SImew 5th-percentile p-value SImed

ew 5th-percentile p-value

mkt
smb 0.006 [-0.274] (0.509) -0.006 [-0.347] (0.478) -0.075 [-0.364] (0.382) -0.151 [-0.435] (0.302)
hml -0.180 [-0.078] (0.000) -0.174 [-0.099] (0.005) 0.010 [-0.045] (0.731) 0.016 [-0.075] (0.724)
mom 0.360 [-0.089] (1.000) 0.537 [-0.127] (1.000) 0.500 [-0.124] (1.000) 0.620 [-0.171] (1.000)
skew -0.036 [-0.037] (0.051) -0.055 [-0.053] (0.048) -0.034 [-0.034] (0.047) -0.112 [-0.059] (0.007)
psl -0.001 [-0.018] (0.343) -0.015 [-0.034] (0.149) 0.014 [-0.028] (0.864) 0.008 [-0.049] (0.698)
roe 1.035 [-0.156] (1.000) 1.223 [-0.194] (1.000) 1.734 [-0.160] (1.000) 1.923 [-0.220] (1.000)
ia -0.195 [-0.063] (0.000) -0.165 [-0.079] (0.001) 0.287 [-0.090] (1.000) 0.372 [-0.133] (0.999)
qmj 1.242 [-0.175] (1.000) 1.494 [-0.229] (1.000) 2.125 [-0.182] (1.000) 2.283 [-0.232] (1.000)
bab -0.205 [-0.064] (0.000) -0.264 [-0.082] (0.000) -0.118 [-0.054] (0.003) -0.203 [-0.082] (0.001)
gp 0.040 [-0.025] (0.986) 0.081 [-0.052] (0.987) -0.078 [-0.042] (0.015) -0.123 [-0.054] (0.001)
cma -0.296 [-0.079] (0.000) -0.269 [-0.096] (0.000)
rmw 0.329 [-0.104] (1.000) 0.456 [-0.145] (0.999) 0.599 [-0.111] (1.000) 0.633 [-0.158] (1.000)
civ

multiple test multiple test multiple test multiple test

min [-0.282] (0.040) [-0.348] (0.142) min -0.364 (0.370) -0.438 (0.315)
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G Other issues

G.1 Time-varying Factor Loadings

Our application focuses on panel regressions with fixed factor loadings. Our setting
is therefore analogous to the environment of the GRS test where asset returns are
projected onto factor proxies with constant factor loadings. It is also related to the
two-pass cross-sectional regression method with time-invariant factor loadings, see,
e.g., Shanken (1992), Jagannathan and Wang (1998), Shanken and Zhou (2007), and
Kan, Robotti, and Shanken (2013).

While unconditional models approximate the asset pricing environment in a simple
fashion, the true model might be conditional. Therefore, it might seem reasonable to
always use a conditional model when possible. This is not true. Even when the true
model is conditional, estimation errors for conditional betas may outweigh the gain
of correctly specifying the true model, rendering the inference less efficient than an
unconditional model specification. See Ghysels (1998).

Having discussed the pros and cons of conditional and unconditional model specifi-
cations, we explore two extensions of our panel regression tests that can accommodate
time-varying factor loadings. The first extension is to explicitly model the condition-
ing variables as functions of financial and macroeconomic variables, as in Shanken
(1990), Ferson and Harvey (1991), and Lettau and Ludvigson (2001). This effectively
introduces new factors that interact the original factors with financial and macroeco-
nomic variables. Our method follows by testing these new factors in addition to the
original factors.

The second extension is to use the adapted Fama-MacBeth framework that we laid
out in Section 2.3. We show how to modify the Fama-MacBeth framework so that the
null hypothesis — the average of the time-series slope coefficients is zero — is exactly
achieved in sample. We can then use this framework to incrementally select the list of
true risk factors, similar to what we do with panel regressions. This framework allows
us to take time-varying factor loadings into account as in the original Fama-MacBeth
approach.

In this paper, we focus on unconditional models and leave these extensions to
future research.

G.2 Stepwise Model Selection

Our method falls in the realm of stepwise model selection, in particular forward
selection for which we sequentially build up the true factor model. Unlike traditional
F-tests or R2 procedures, we pay particular attention to the multiple testing issue,
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making sure that the Wilkinson and Dallal (1981) critique does not apply to our
method.

Having said this, we are aware of the issue that the p-value of our overall pro-
cedure, however defined, is likely to be a complex function of the p-values of the
individual steps. In our simulation study, we also sidestep this issue by only con-
sidering the incremental selection of the second risk factor after the market factor
is pre-determined. Notice that at each step, our method proposes a self-contained
hypothesis testing framework that tests the incremental contribution of a group of
candidate factors to a set of pre-determined factors. The p-value represents the mul-
tiple testing adjusted statistical significance of the best candidate variable. We leave
a more detailed simulation study of our framework, in particular its overall perfor-
mance in terms of selecting the true model or a model that has a significant overlap
with the true model, to future research.

Traditional model selection methods such as the Akaike information criterion
(AIC) or the Bayesian information criterion (BIC) are unlikely to work in our frame-
work. We have a large panel of assets. The number of parameters to be estimated is
proportional to the size of the cross-section. As a result, the asymptotic approxima-
tions that are required by AIC and BIC are unlikely to hold in our framework. Our
bootstrap-based method provides a convenient way to make inference for a limited
sample.

An alternative approach to forward selection is backward selection. That is, we
start with an overall factor model and sequentially eliminate redundant factors. Our
method does not apply to backward selection. To see why this is the case, imagine
that we have 30 candidate variables. Based on our method, each time we single out
one variable and measure how much it adds to the explanatory power of the other
29 variables. We do this 30 times. However, there is no baseline model across the 30
tests. Each model has a different null hypothesis and we do not have an overall null.

Besides the technical difficulty of backward selection, we think that forward selec-
tion makes more sense for our application. For the selection of risk factors, as a prior,
we usually do not believe that there should exist hundreds of variables explaining a
certain phenomenon. Forward selection is consistent with this prior.

G.3 Spurious Factors

Spurious factors in factor models refer to factors that have weak covariance with asset
returns. As shown in Kan and Zhang (1999) and Bryzgalova (2014), spurious factors
make the usual inference methods problematic as the risk premia in factor models are
weakly identified. Kan and Zhang (1999) and Bryzgalova (2014) propose diagnostic
tools as well as shrinkage methods to detect and test spurious factors.
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Our testing framework departs from the usual two-stage Fama-MacBeth frame-
work or the associated generalized methods of moments (GMM) approach. In partic-
ular, we do not need to use the differences in factor loadings in the cross-section to
identify factor risk premia, which is the source of the identification problem studied
in Kan and Zhang (1999) and Bryzgalova (2014). Our method uses the reduction in
absolute regression intercept (i.e., mispricing) as the test metric to gauge the success
of a factor model. A spurious factor, by having a factor loading that is close to zero,
naturally implies a small reduction in regression intercept and is likely to be identified
as a false risk factor in our framework.

G.4 Factor Model Uncertainty and Model Misspecification

To better link our method to the GRS test, one can think of the baseline model as
the null hypothesis and the augmented model as the alternative hypothesis. The
GRS test hypothesizes that the augmented model is the true underlying factor model
and tests the deviations of the absolute regression intercepts from zero under this
hypothesis. In this sense, the GRS test works under the alternative hypothesis. In
contrast, our method works under the null hypothesis. We assume that the baseline
model performs as well as the augmented model, that is, the additional factor in the
augmented model has a zero contribution to explaining the cross-section of expected
returns. We test whether the augmented model improves on the baseline model under
this assumption.

Due to the above difference in the testing framework, our model is likely to be more
powerful in identifying risk factors that belong to the true underlying factor model.
For example, suppose the baseline model is simply a constant and the augmented
model has the market factor as the candidate risk factor. For a given set of test
assets and under GRS, we will reject the GRS null hypothesis (that is, CAPM is the
true factor model) since there likely exist other factors that also drive asset returns
but do not enter our test. As a result, we reject CAPM and conclude that the
market factor cannot fully explain the returns of the test assets. This tells us little
about whether the market factor is a useful risk factor or not. In contrast, in our
framework, we are likely to identify the market factor as useful since the augmented
model significantly improves on the baseline model (that is, a constant) in explaining
the cross-section of expected returns.

In general, given the existence of hundreds of factors that are potential candidates
for risk factors, there is a large amount of uncertainty around the true underlying
factor model. As a result, any given factor model is likely to be misspecified. The
use of the GRS test is limited since almost all models will be rejected in the end.
Our test is less sensitive to model misspecifications and allows one to sequentially
build the factor list. It does not try to make a statement about the underlying true
factor model as in the GRS test. However, it tells us which factors are likely to be
the members of the underlying true factor model.
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H FAQ

• Isn’t weighting by market cap just another way of creating size portfolios? (Sec-
tion 2)

In our paper, value weighting allows us to take into account the differential im-
pact of a factor across size groups. It could be the significance (e.g., t-statistic)
of the factor across size groups. This is different from the return differential
across size groups that are caused by the size effect.

• GRS sometimes implies excessive short positions in certain assets. Does our
approach suffer from the same problem?

No. Our method evaluates the average (either equal weighting or value weight-
ing) level of mispricing. Importantly, it does not try to find the optimal portfolio
choice that exploits mispricing. Hence, excessive short position is not a concern
in our framework.

• Does the difference in the GRS statistic between two models also measure the
reduction in the intercepts?

The difference in the GRS statistics is a function of the intercepts and the
covariance matrices. Suppose model A and B have the same intercepts but B
implies a larger covariance matrix (assuming a diagonal matrix). Then model
B is considered a better model than A by the GRS statistic. One issue with
the use of the GRS statistic to measure relative model performance is that
omitted factors may have a large impact on the covariance matrix, not just the
intercepts.

• In Table II, why is the single test 5th-percentile -34% for the market factor and
the multiple test 5th-percentile trivially different at -38%?

This is actually one intuitive feature of our approach. In bootstrapped sam-
ples, extreme negative reductions are oftentimes caused by the orthogonalized
market factor. In other words, the crowding out effect is not evenly distributed
across factors. The reduction for the orthogonalized market factor (although on
average zero by construction) has more variation, which leads to more extreme
negative values compared to other factors.
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