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Appendix A.1: Currency Pairs Affected by the CFTC Regulation

Table A.1
The CFTC regulation and Leverage-Constraints across Currency Pairs
Description: This table lists the currency pairs affected by the CFTC trading rule restricting the amount of leverage at 50:1 or 20:1.

50:1 leverage

USD/JPY AUD/NZD NZD/CAD EUR/GBP GBP/USD

USD/CHF USD/SEK CHF/JPY EUR/JPY GBP/JPY

AUD/USD USD/DKK CAD/JPY EUR/AUD GBP/CHF

USD/CAD USD/NOK CAD/CHF EUR/CAD GBP/CAD

NZD/USD AUD/CHF CHF/SEK EUR/SEK GBP/NZD

AUD/CAD NOK/JPY CHF/NOK EUR/NOK GBP/AUD

AUD/JPY SEK/JPY EUR/USD EUR/NZD GBP/SEK

NZD/JPY NZD/CHF EUR/CHF EUR/DKK

20:1 leverage

USD/MXN USD/CZK USD/HKD USD/RUB ZAR/JPY

EUR/PLN USD/ZAR SGD/JPY EUR/HUF

USD/PLN USD/SGB USD/TRY USD/HUF

EUR/CZK HKD/JPY EUR/TRY TRY/JPY

i



Appendix A.2: A Stylized Model of the Retail Forex Market

In this appendix, we present a stylized model that motivates our empirical analysis and enables us to eval-
uate social welfare. We first describe the environment and characterize the equilibrium together with various
variables of interest. We then analyze how the leverage-constraint policy affects the equilibrium variables as well
as social welfare.

Environment and equilibrium

Agents, information structure, and beliefs.. Consider an economy with a single consumption good (which will be
referred to as a dollar) and a single trading period. There is a risk-free asset with gross return normalized to one.
There is also a single risky asset (a currency). In the interbank market, the asset currently trades at an exogenous
market price normalized to one, p0 = 1. At the next period, the asset will trade at price, p1, which is a random
variable. The objective distribution of the asset price change (that will be reflected in our empirical analysis) is
given by p1 −1 ∼ N

(
µtr ue

s ,σ2
)
. Here, s ∈ S denotes an aggregate state realized at the beginning of date 0. We let qs

denote the ex-ante probability of the aggregate state (according to each agent) and assume
∑

s qsµ
tr ue
s = 0 so that

the price is a martingale under the objective belief.
There are traders, denoted by i ∈ I , that take optimal positions in the asset that will be described below.

For simplicity, we normalize the mass of traders to one so that the aggregate and the per-trader outcomes are the
same. Traders have dogmatic beliefs and do not learn from prices (formally, traders know each others’ beliefs and
agree to disagree). Traders’ beliefs can also depend on the aggregate state s ∈ S. Specifically, trader i believes the
price change is distributed according to, p1 −1 ∼ N

(
µi

s ,σ2
)
. Since the objective belief is unique, the heterogeneity

in traders’ beliefs can be thought of as capturing various behavioral distortions (which we leave unmodeled for
simplicity). On the other hand, the dependence of traders’ beliefs on the aggregate state allows traders also to be
somewhat informed. In particular, to the extent that a trader’s belief and the objective belief (µi

s and µtr ue
s ) are

positively correlated, the trader’s positions will tend to generate positive expected return before transaction costs,
which we refer to as “information.”

Trader i also starts with initial initial wealth given by, ni
0, and has CARA preferences with coefficient of

absolute risk aversion, γi . The type of trader i is given by the parameters,
(
γi ,ni

0,µi
s

)
. We let dFs

(
γi ,ni

0,µi
s

)
denote

the joint distribution function over trader types conditional on the aggregate state. We can be quite general about
the shape of this distribution except for a technical condition that we note below. All agents know and agree upon
the type distribution, dFs

(
γi ,ni

0,µi
)
, as well as the probability of aggregate states,

(
qs

)
s . Their disagreements

concern he asset’s expected payoff.
There is also a competitive retail brokerage sector that provides intermediation services. Consider a single

(representative) broker. For simplicity, the broker is risk neutral and she has the objective belief about the asset
payoff. In particular, she believes the price change is distributed according to p1 − 1 ∼ N

(
µtr ue

s ,σ2
)

conditional
on the aggregate state s ∈ S. However, the broker does not observe the aggregate state, and it sets bid and ask
prices at the beginning of the period before she can observe endogenous signals about the aggregate state (such
as aggregate trading volume). Since traders’ beliefs depends on the aggregate state, this might put the broker at
an informational disadvantage relative to traders. As in Glosten and Milgrom (1985), the broker will set bid and
ask prices that take into account the information content of traders’ orders. For simplicity, we assume the broker
sets a single bid price and a single ask price, pbi d

0 and pask
0 , and stands ready to fill sell and buy orders linearly at

these prices regardless of the size of the order.22We will make assumptions so that, similar to Glosten and Milgrom
(1985), the equilibrium bid price will be lower than the ex-ante objective value of the broker (normalized to one)
which in turn will be lower than the equilibrium ask price, pbi d

0 < 1 < pask
0 .

Traders’ optimal positions.. Trader i takes the bid and ask prices as given and decides to take a long or short posi-
tion in the risky asset denoted by xi

s . She invests her residual wealth in the risk-free asset. She can also use leverage
on long or short positions without any additional fees but that might be subject to a regulatory limit. Specifically,
we require the position (evaluated at the market value) to satisfy,

∣∣xi
s

∣∣≤ lni where l is an exogenous leverage limit

22In general, the size of the order can also contain some information about the aggregate state (e.g., larger orders might be associated with
better information), and the broker might want to set size-dependent prices that reflect this information. Modeling this feature explicitly could
generate additional interesting predictions but it wouldn’t change our qualitative conclusions. We therefore restrict attention to linear prices
and simplify the analysis.
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set by regulation. We also allow for the case l =∞, which corresponds to the equilibrium without leverage restric-
tion.23 The trader’s portfolio problem can be written as,

max
xi

s∈
[
−lni

0,lni
0

]E i
s

[
−exp

(
ni

1

)]
where ni

1 =
{

ni
0 +xi

s

(
p1 −pask

0

)
if xi

s > 0
ni

0 +xi
s

(
p1 −pbi d

0

)
if xi

s < 0
(8)

In view of the CARA-Normal setup, the trader’s optimal position (conditional on the aggregate state realization) is
given by,

xi
s =


min

(
µi

s−pask
0

γiσ2 , lni
0

)
, if µi

s > pask
0

0, if µi
s ∈

(
pbi d

0 , pask
0

)
max

(
−l ni

0,
µi

s−pbi d
0

γiσ2

)
, if µi

s < pbi d
0

. (9)

The broker’s problem and bid-ask spreads.. The broker is subject to two types of costs. First, as we already men-
tioned, the broker can be subject to informational costs since traders might on average have some information.
The broker takes the opposite side of traders’ (possibly informed) positions, and keeps the positions on its balance
sheet, which exposes it to potential losses.24 Second, the broker also incurs technological costs that capture the
infrastructure and the employees utilized to facilitate intermediation. For simplicity, we assume these costs grow
linearly in the size of traders’ positions: specifically, intermediating each unit of long or short position costs the
broker c > 0 additional dollars. Using these assumptions, the broker’s expected certainty equivalent wealth (under
its objective belief) conditional on the aggregate state is given by,

C E b
s =

∫
i ,xi

s>0−xi
s

(
E tr ue

s

[
p1

]− (
pask

0 − c
))

dFs
(
γi ,ni

0,µi
s

)
+∫

i ,xi
s<0−xi

s

(
E tr ue

s

[
p1

]− (
pbi d

0 + c
))

dFs
(
γi ,ni

0,µi
s

) . (10)

We assume there are a large number of identical brokers that compete a la Bertrand to set bid and ask prices, pbi d
0

and pask
0 . Competition drives down the broker’s expected profit from both buy and sell orders to zero, that is,

∑
s∈S

qs

∫
i ,xi

s<0
−xi

s

(
E tr ue

s

[
p1

]− (
pask

0 − c
))

dFs

(
γi ,ni

0,µi
s

)
= 0,

and
∑
s∈S

qs

∫
i ,xi

s<0
−xi

s

(
E tr ue

s

[
p1

]− (
pbi d

0 + c
))

dFs

(
γi ,ni

0,µi
s

)
= 0.

This also implies that the broker’s total expected profit is zero,
∑

s∈S qsC E b
s = 0. After rearranging these expressions

and using E tr ue
s

[
p1

]= 1+µtr ue
s , we obtain,

pask
0 = 1+ml ong + c and pbi d

0 = 1−mshor t − c (11)

where

ml ong = E
[
xi

sµ
tr ue
s |xi > 0

]
E

[
xi

s |xi
s > 0

] and mshor t = E
[
xi

sµ
tr ue
s |xi

s < 0
]

E
[−xi

s |xi
s < 0

] . (12)

Here, the expectation operator E [·] is taken with respect to the distributions dFs and qs (on which there is no
disagreement). The terms mlong and mshor t reflect traders’ average information: their expected profit per unit
position on respectively long and short trades. In particular, mlong is positive if the traders on average purchase
the asset when it has a positive expected return. Likewise, mshor t is positive if the traders’ on average sell the asset
when it has a negative expected return.

23In practice, there might also be endogenous restrictions on the leverage ratio as in Geanakoplos (2009) or Simsek (2013). We abstract away
from these endogenous leverage limits since they do not affect our qualitative results.

24One could wonder whether the broker could avoid this outcome by outlaying the position immediately to the interbank market. Our
empirical analysis shows that the bid-ask spreads in the interbank market are on average very similar to the bid-ask spreads in the retail market.
This means that outlaying the position to the interbank market is on average not profitable, arguably because similar intermediation costs also
apply in the interbank market.
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Eq. (11) says that, similar to Glosten and Milgrom (1985), the broker takes into account the information
content in buy and sell orders. If mlong is positive, then the broker that receives a buy order faces adverse selec-
tion. In equilibrium, it increases the ask price so as to break even (otherwise, it would consistently lose money).
Symmetrically, if mlong is negative, then the broker faces an advantageous selection and lowers its ask price (due
to competitive pressure) while still breaking even. Similar considerations explain the relationship between traders’
market-timing profit on the short trades, mshor t , and the broker’s bid price.

Definition of equilibrium.. The equilibrium in this model is a collection,
((

pask
0 , pbi d

0

)
,
((

xi
s

)
i∈I

)
s∈S

)
, such that the

positions satisfy (9) given the bid-ask prices, and the bid-ask prices satisfy (11) given the positions and the cu-
mulative distribution function Fs

(
γi ,ni

0,µi
s

)
. We assume there exists a unique equilibrium that also satisfies the

inequality, pbi d
0 < 1 < pask

0 (the bid price is lower than the ex-ante expected payoff which is lower than the ask
price). This would be the case under a mild technical assumption on the distribution Fs .25

Trading volume.. We next characterize traders’ expected profit as well as their expected utility and the social wel-
fare. As we will see, trading volume plays a central role in these characterizations. Therefore, we define the long,
the short, and the total trading volume as respectively,

V long = E
[

xi
s |xi

s > 0
]{∑

s∈S
qs

∫
i .xi

s>0
dFs

(
γi ,ni

0,µi
s

)}
(13)

V shor t = E
[
−xi

s |xi
s < 0

]{∑
s∈S

qs

∫
i .xi

s<0
dFs

(
γi ,ni

0,µi
s

)}
and V =V long +V shor t .

Here, the terms in set brackets capture the fraction of traders that take respectively long or short positions.26 The
expressions illustrate that the trading volume reflects the fraction of long or short trades as well as the expected
size of each trade.

Traders’ expected profit.. Under the objective distribution, trader i ’s expected profit is given by,
∑

s∈S qs xi
s

(
E tr ue

s

[
p1

]−pask
0

)
,

if he takes a long position, and a similar expression if he takes a short position. Aggregating these positions, traders’
overall expected profit is given by,

Π=
∑

s∈S qs
∫

i ,xi
s>0 xi

s

(
E tr ue

s

[
p1

]−pask
0

)
dFs

(
γi ,ni

0,µi
s

)
+∑

s∈S qs
∫

i ,xi
s<0 xi

s

(
E tr ue

s

[
p1

]−pbi d
0

)
dFs

(
γi ,ni

0,µi
s

) .

After substituting E tr ue
s

[
p1

] = 1+µtr ue
s , together with the definitions of the volume and market-timing profit in

Eqs. (12) and (13), we can further rewrite this as,

Π=V l ong
(
1+mlong −pask

0

)
+V shor t

(
pbi d

0 −
(
1−mshor t

))
(14)

The intuition behind this expression is that the typical long position pays 1+mlong and costs the ask price, pask
0 .

Likewise, the typical short position pays the bid price, pbi d
0 , and it costs 1−mshor t . The expression illustrates that

the traders’ expected profit is increasing in their average information and decreasing in the bid-ask spreads.
In equilibrium, the bid and ask prices are given by Eq. (11). Substituting this into Eq. (14), traders’ expected

profit in equilibrium is given by,
Π=−cV l ong − cV shor t =−cV . (15)

25To illustrate this, suppose Fs

(
γi ,ni ,µi

s

)
is independent of s. In this case, traders’ positions contain no information about the aggregate

state, the information terms drop out of (11). Then, there exists a unique equilibrium which also satisfies the inequality, pbi d
0 < 1 < pask

0
(since c > 0). By a continuity argument, there exists a unique equilibrium that satisfies the same inequality as long as the dependence of the

distribution Fs

(
γi ,ni ,µi

s

)
on the aggregate state s is sufficiently small. We could parameterize this dependence and formalize the assumption

but this is not necessary for our purposes.
26These two fractions do not necessarily sum to one since there are also traders that take a zero position (see Eq. (9)).
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That is, the equilibrium profit depends negatively on the trading volume. Intuitively, since the competitive broker
breaks even, the technological intermediation costs are ultimately passed through to traders via bid-ask spreads.
The more traders trade, the more they incur these costs. Perhaps more surprisingly, traders’ average information
does not affect their equilibrium profit. The intuition is that the market maker sets bid and ask prices to neutralize
information. For instance, if the traders’ average information improves, then the market maker widens the bid-
ask spreads (otherwise, it would consistently make losses and go out of business). Once the broker adjusts, the
improved information does not affect traders’ profits but it is reflected in bid and ask prices.

The broker’s expected revenue and size.. Recall that the broker breaks even in equilibrium. In particular, its ex-
pected intermediation revenues are equal to the technological intermediation costs, cV . Recall that we view these
costs as capturing the infrastructure and the labor the brokerage employees. Hence, the brokerage’s intermedia-
tion revenues and size depend positively on the trading volume.

Belief-neutral social welfare.. We next characterize the social welfare in equilibrium. Since there are heteroge-
neous beliefs about the asset payoff, the social welfare will generally depend on the belief used to calculate agents’
utilities. The standard Pareto welfare criterion would correspond to maximizing each agent’s utility under her own
belief. However, it is unclear whether perceived gains from speculation should be counted towards social welfare
since they capture a collective form of irrationality: while all agents believe they have the correct belief, at most
one of them could be right.

An alternative is to evaluate investors’ beliefs under the objective belief distribution (which in this model
corresponds to the broker’s belief distribution). While appropriate, this approach faces a challenge in practice:
The planner might not know who has the correct belief. Following Brunnermeier et al. (2014), we instead assume
the planner evaluates the welfare under a fixed belief h, but she also makes the welfare comparisons robust to the
choice of the belief. Specifically, we allow h to be an arbitrary convex combination of the traders’ beliefs or the
broker’s (objective) belief.

We also focus on a utilitarian social planner that maximizes the sum of agents’ certainty-equivalent wealth,

W h = ∑
s∈S

qs

(
C E b,h

s +
∫

i
C E i ,h

s dFs

(
γi ,ni

0,µi
s

))
. (16)

Here, C E b,h
s denotes the broker’s certainty-equivalent payoff and C E i ,h

s denotes trader i ’s certainty-equivalent
payoff conditional on the aggregate state. In view of the CARA-Normal setting, restricting attention to traders’
certainty-equivalent payoffs is without loss of generality. Assigning all traders as well as the broker the same Pareto
weight is slightly more restrictive but it provides a natural benchmark.27

Combining Eqs. (9) and (8), trader i ’s certainty-equivalent payoff under belief h can be calculated as,

C E i ,h
s = ni

0 +


xi

s

(
E h

s

[
p1

]−pask
0

)− 1
2γ

i
(
xi

s

)2
σ2, if µi

s > pask
0

0 if µi
s ∈

(
pbi d

0 , pask
0

)
xi

s

(
E h

[
p1

]−pbi d
0

)− 1
2γ

i
(
xi

s

)2
σ2, if µi

s < pbi d
0

. (17)

Thus, traders’ certainty-equivalent payoff reflects their expected profits under belief h as well as their risk aversion
and portfolio variance. Likewise, the broker’s certainty-equivalent payoff under belief h can be calculated as,

C E b,h
s =

∫
i ,xi

s>0−xi
s

(
E h

s

[
p1

]− (
pask

0 − c
))

dFs
(
γi ,ni

0,µi
s

)
+∫

i ,xi
s<0−xi

s

(
E h

s

[
p1

]− (
pask

0 − c
))

dFs
(
γi ,ni

0,µi
s

) . (18)

This is similar to Eq. (10) with the difference that the expected asset payoff is calculated according to a general
belief h (which is not necessarily the true belief).

27In fact, this assumption is also without loss of generality as long as we allow the planner to do one-time ex-ante transfers among the agents.
In this case, an allocation x that leads to greater utilitarian welfare, W h , than another allocation y can be also made to Pareto dominate the
allocation y (under belief h) after combining it with appropriate ex-ante transfers.
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Combining Eqs. (16) , (17), and (18), we can calculate the social welfare as,

W h = −cV + ∑
s∈S

qs

∫
i

(
ni

0 −
1

2
γi

(
xi

s

)2
σ2

)
dFs

(
γi ,ni

0,µi
s

)
= E

[
ni

0

]
− cV − 1

2
E

[
γi

(
xi

s

)2
σ2

]
. (19)

Here, the expectation operators in the second line are taken with respect to the distributions dFs and qs (on which
there is no disagreement). Hence, Eq. (19) illustrates that the welfare does not depend on the belief h used for the
calculation (i.e., the expected price, E h

s

[
p1

]
, drops out of the welfare calculations). This is because, under any fixed

belief h, the expected gain of an agent is the expected loss of another agent. This captures the idea that speculation
transfers wealth among agents without creating social value. Once properly accounted for, these transfers do not
affect social welfare.28 As in Brunnermeier et al. (2014), the planner can evaluate the effect of speculation on social
welfare without taking a stand on whose belief is correct. We refer to W ≡W h as the belief-neutral welfare.

Eq. (19) also illustrates that the belief-neutral welfare is decreasing in the expected intermediation costs,

−V c, as well as their expected (risk-aversion weighted) portfolio variance, E
[
γi

(
xi

)2
σ2

]
. Intuitively, every inter-

mediated position requires technological costs, which reduces social welfare as the resources or people used for
intermediation could also be used elsewhere. These costs are naturally increasing in trading volume. In addition,
to the extent that speculation induces investors to take riskier positions, the resulting portfolio risks also reduce
social welfare.

Comparative statics of the leverage-constraint policy

We next characterize the effect of the leverage restriction policy on the equilibrium variables. It is useful to
break this exercise into two steps: a partial equilibrium exercise in which brokers’ bid-ask spread remain at their
pre-policy levels, and a general equilibrium exercise in which the spreads also adjust. In practice, brokers are un-
likely to change their spreads in the very short run (which we view as a month or so) due to inertia or optimization
frictions.29Hence, we view our short-run empirical results as testing the partial equilibrium predictions. In the
longer run (which we view as several months), brokers would arguably adjust their bid-ask spreads to their new
equilibrium levels. Thus, we view our longer-run empirical results as testing the general equilibrium predictions.
We denote the partial equilibrium with hatted variables, and the general equilibrium (after the policy change) with
starred variables.

Partial equilibrium effects on trading volume.. Before the leverage-constraint policy, traders’ positions are given
by Eq. (9) with l =∞ and the volume is given by Eq. (13). Now suppose the leverage-constraint policy is imposed.
In partial equilibrium, traders’ positions are still given by Eq. (9) but with a finite l (but still evaluated at the same
bid and ask prices). That is, we have, x̂i

s = lni
0 < xi

s , if xi
s =

µi
s−pask

0
γiσ2 > lni

0

x̂i
s =−lni

0 >−xi
s , if xi

s =
µi

s−pbi d
0

γiσ2 < l ni
0

.

In particular, the long and short positions that violate the leverage-constraint are downscaled to satisfy the leverage-
constraint. Thus, the expected size of the long and short positions both decline. By Eq. (13), the trading volumes
decline, that is,

V̂ long ≤V l ong ,V̂ shor t ≤V shor t and V̂ ≤V .

Partial equilibrium effects on portfolio risks.. In partial equilibrium, the average portfolio risks decline, E
[
γi

(
x̂i

s

)2
σ2

]
≤

E
[
γi

(
xi

s

)2
σ2

]
, since the risky positions that violate the leverage-constraint are reduced, x̂i

s ≤ xi
s .

28Likewise, the bid and ask prices, pask
0 and pbi d

0 , do not affect social welfare since they represent transfers between the traders and the
brokers. In particular, Eq. (19) would apply not only with the equilibrium bid and ask prices given by Eq. (11)—which ensure that brokers break
even, but also with other bid and ask prices that might generate net profits or net losses for the brokers.

29Since the leverage-constraint changes the set of trades the broker intermediates, it might take a while for the broker to figure out its overall
profits and losses in this new market, and to adjust its bid-ask spreads appropriately.
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Partial equilibrium effects on traders’ expected profit.. In partial equilibrium, Eq. (14) still applies and implies that
traders’ expected profit becomes,

Π̂= V̂ l ong
(
1+m̂long −pask

0

)
+ V̂ shor t

(
pbi d

0 −
(
1−m̂shor t

))
.

However, the bid-ask spreads are still at their old equilibrium levels,

pask
0 = 1+mlong + c and pbi d

0 = 1−mshor t − c.

Combining these expressions with Eq. (15), which applies before the policy, we obtain,

Π̂−Π=−c
(
V̂ −V

)+ V̂ long
(
m̂l ong −mlong

)
+ V̂ shor t

(
m̂shor t −mshor t

)
.

Here, the first term captures the effect of the constraint via trading volume. Since V̂ ≤ V , the leverage-constraint
tends to improve traders’ profits through its effect on volume. The second and the third terms capture the ef-
fect via changes in average information. To the extent that the leveraged positions are associated with a different
level of information than other positions, then the policy would also affect traders’ (partial equilibrium) profit by
improving or worsening their average information.

General equilibrium effects on bid-ask spreads.. In general equilibrium, bid and ask prices adjust to neutralize the
changes in traders’ average information. More specifically, Eq. (11) implies,

pask,∗
0 −pask

0 = ml ong ,∗−ml ong and pbi d
0 −pbi d ,∗

0 = mshor t ,∗−mshor t .

Recall also that the equilibrium level of the bid and ask prices are determined as a fixed point. Under the regularity
assumptions we made (that ensure unique equilibrium), the signs of the price changes are determined by the sign
of the partial equilibrium change in average information, respectively, m̂long −mlong and m̂shor t −mshor t . Hence,
the model predicts that the bid-ask spreads should eventually increase (resp. decrease) if the policy increases (resp.
decreases) the average information in traders’ orders.

Note also that, once the bid-ask spreads adjust, traders’ payoffs are given by Eq. (15), and the effect of the
policy on these payoffs is given by, M∗−M = −c (V ∗−V ). In general equilibrium, the leverage-constraint policy
affects traders’ payoffs only by its effect on trading volume.

General equilibrium effects on the broker... Recall that, in general equilibrium, the broker’s revenue and its size are
determined by the technological intermediation costs, cV . Hence, by lowering the trading volume, the leverage-
constraint policy lowersthe revenue as well as the size of the brokerage sector.

Effects on social welfare.. Before the leverage-constraint policy, the belief-neutral social welfare is given by Eq.
(19). After the policy, the social welfare is given by the same expression but evaluated with the partial equilibrium
(hatted) variables or the general equilibrium (starred) variables. In particular, the welfare effect of the policy is
characterized by its effect on trading volume and average portfolio risks. Recall that in partial equilibrium, the
model predicts that the policy reduces the trading volume as well as average portfolio risks. Hence, the model also
predicts that the policy improves belief-neutral social welfare in partial equilibrium. This prediction also applies
in general equilibrium as long as the endogenous price response is not strong to overturn the sign of the partial
equilibrium effects on trading volume and portfolio risks.

In our empirical analysis, we find that the policy substantially reduces the trading volume in the short run
as well as in the longer run (see Section 4.1). In unreported results, we also analyze the effect on the volatility
of traders’ portfolio returns, and find mixed evidence that seems to point toward the policy lowering portfolio
volatility (see Footnote 15 in Section 4.2). Hence, from the lens of this model, our empirical evidence suggests that
the leverage-constraint policy improves social welfare.

Obviously, our model is too stylized to capture all potential reasons for trade in the forex market. For in-
stance, some traders could be trading to hedge their background risks, as in Simsek (2013a). Others might be
enjoying the sensation from trading. If we were to model these other motives for trade, they would show up as
additional terms in Eq. (19). Moreover, restricting leverage (and trade) would typically tend to lower social welfare
through these terms. In an empirical analysis, it is impossible to capture all possible reasons for trade. We view
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our analysis as capturing a key driving force for trade (monetary pursuits from speculation). Our empirical analy-
sis suggests that through this channel the leverage restriction policy had a large positive impact on social welfare.
This can also be viewed as setting a (very high) threshold that other rationales for trade would have to exceed to
overturn our qualitative conclusion that the leverage restriction policy improved social welfare.

Finally, recall that according to our welfare criterion the bid and ask prices do not matter for the social wel-
fare. This is because they represent transfers among investors, which is ignored by a utilitarian planner that uses a
single belief and puts equal weight on all agents (see also Footnote 28).30While this provides a reasonable bench-
mark, one could imagine reasons for why the social planner might also care about bid-ask spreads. For instance,
suppose some traders are trading for non-speculative reasons, e.g., to hedge their background risks. Higher bid-
ask spreads would reduce these traders’ welfare. To the extent that the planner overweights such traders’ welfare
(and underweights the welfare of the “speculative” traders), then higher bid-ask spreads could also lower social
welfare. More generally, bid-ask spreads reflect market quality, which the planner might care about in addition to
social welfare.

As we noted, our theoretical analysis suggests the policy increases the bid-ask spreads over the longer run
if and only if it improves traders’ average information. In our empirical analysis, we find no significant effect on
bid-ask spreads. We also find (in back-of-the-envelope calculations) that the policy does not substantially change
traders’ gross returns, which provides a measure of their average information. Hence, the zero result on bid-ask
spreads can also be reconciled with our model, and it suggests that the leverage-constraint policy does not have
an adverse effect on social welfare through bid-ask spreads.

30This is also why the social welfare is characterized by the same equation (19) in partial as well as general equilibrium, even though the
corresponding equilibrium allocations differ in terms of the bid and ask prices.
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Appendix A.3: Evidence on the Representativeness of the myForexBook Data

This section provides evidence that the trade level data from myForexBook provides a good representation
of the population of retail forex traders. The myForexBook web platform provides a social networking environment
for traders who have accounts with at least one of around fifty partnering brokerages. Because traders choose to
use the myForexBook platform, these traders could be unrepresentative of the overall population.

We first compare the myForexBook traders’ performance to that of the population of traders on the broker-
age eToro, one of the market’s largest off-exchange brokerages. The eToro data includes all transactions between
June 2, 2013, and July 14, 2014.31 The data include over 11 million transactions from retail traders located in nearly
200 countries and independent territories.

Our analysis is specifically interested in how the availability of leverage affects traders’ wealth. Though
our eToro sample comes from a time period different than the myForexBook data, eToro traders also have worse
returns on positions that use more leverage (A.2, columns 3 and 4). On average, they lose between 65 and 75% ROI
per trade for every additional 100 units of leverage. myForexBook traders during our main sample window lose
around 28% per trade for every 100 unit increase in leverage. These results are consistent with the myForexBook
data being plausibly representative of how traders in the market respond to having less leverage.

Table A.2
Correlation Between Leverage and Trader Returns Across Different Data Sets
Description: This table reports OLS estimates of the following regression:

ROI j i t = γi +γt +β1leverage j i t +ε j i t

where i is a trader, j is a trade, and t is a day (trades are recorded by the second). The dependent variable is ROI, which is per-trade return on
investment. Columns (1) and (2) use the myForexBook sample that is used throughout the paper. Columns (3) and (4) use the entire population
of trades on eToro between June 2, 2013 and July 14, 2014. Standard errors are double-clustered by day and trader, and *, **, and *** denote
significance levels p < 0.10 , p < 0.05 , and p < 0.01, respectively.

data set: myForexBook eToro (June 2013 - July 2014)

dep var: ROI (1) (2) (3) (4)

leverage / 100 -0.281** -0.278** -0.660*** -0.744***

(0.12) (0.12) (0.16) (0.13)

trader FE x x x x

day FE x x

Number of trades 270,051 270,051 11,580,789 11,580,789

R2 0.038 0.040 0.079 0.082

We also find that the myForexBook data is similar to the CFTC data (the brokerages in the CFTC reports
account for about 95% of the U.S. market for retail forex). We calculate the total number of trades per month in the
myForexBook data and take the log first difference. We also take the log first difference of aggregate retail foreign
exchange obligations in the CFTC reports. We multiply the forex obligations time series by negative one, because
we would expect the brokerage’s obligations to decrease when there is more trading; on average, traders lose money
when they trade, which would reduce the value of the traders’ accounts (lower the brokerages’ obligations). These
series overlap from November 2011 to April 2012. The Pearson’s correlation coefficient between these series is
0.41, which suggests a reasonably strong correlation between the myForexBook and CFTC data sets. Figure A.1
plots these times series.

31The data come from the brokerage, eToro. Per our NDA, eToro maintains the right to approve the use of the company’s name in the
description of the data prior to any publication.
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Fig. A.1. Correlation Between the myForexBook Data and the CFTC Brokerage Reports
Description: This figure plots time series of the number of trades in the myForexBook data set and retail foreign exchange obligations for
brokerages in the CFTC reports. The time series are transformed to the logarithm of monthly first differences. Retail forex obligations are
multiplied by negative one.
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Appendix A.4: Awareness of the CFTC Regulation Announcement

On January 13, 2010, the CFTC announced in the Federal Registrar their intent to restrict foreign exchange
dealers’ provision of leverage at 10:1. Our analysis shows that this announcement did not affect trader returns,
brokerage capital, or the spreads charged by forex brokerages. One plausible explanation for these results is that
the announcement could have gone unnoticed by traders, and therefore did not significantly affect trader behavior.

Figure A.2 plots the time series of Google search volume index (SVI) for the search term “forex leverage.”
Google SVI is often used by the literature to measure attention. There is a substantial increase in attention on forex
leverage that occurs as a result of the CFTC’s announcement, which is consistent with traders being aware that
they were going to have less available leverage.

Fig. A.2. Attention on the CFTC Announcement of Leverage Regulation
Description: This figure plots a time series of U.S. Google search volume index (SVI) for the search term “forex leverage.” Google SVI is the ratio
of searches for a particular term to the total number of Google searches, normalized on a scale from 0 to 100. The data is at a weekly frequency.
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Appendix A.5: Trading Costs and Traders’ Gross Returns

Section presents traders’ net portfolio returns. Table A.3 presents estimates of traders’ gross portfolio returns. To make these back-of-the-envelope
estimates, we have to make assumptions about the transaction costs paid by retail forex traders. Trading costs come from traders paying the bid-ask spread on
each transaction (to our knowledge, no brokerages charge fixed per-fee costs presently, or during the period of our study). Unfortunately, our transaction-level
data set does not tell us the spreads paid by traders, and the amount of trading we observe is too thin to estimate spreads by matching buy to sell orders (for
example, many studies use trade and quote database (TAQ) quotes to estimate spreads).

Therefore, our approach is to make assumptions about average spreads and then apply these assumptions to traders’ net portfolio returns. Specifically,
we believe that average spreads paid are between 3 to 4 pips, where a pip is one one-hundredth of one percent (for example, it would cost three to four dollars
to execute the modal trade in our data ($1,000)). We come to this conclusion by noting that most brokerages advertise spreads that are as low as 1 to 2 pips.
This headline number is presumably in reference to the most liquid currency pair, the EUR/USD, but other currency pairs cost more to trade. Spreads can also
change depending on market conditions: spreads increase by as much as 10 times during episodes of high volatility (see for example, the live spreads presented
by the brokerage Oanda: www.oanda.com/forex-trading/markets/recent). Additionally, price slippage would increase the spreads traders actually pay, and
the National Futures Association (NFA) found that, during the period we study, at least a few brokerages had computer systems designed to take advantage of
slippage (reference). Finally, in support of our assumption that transactions cost an average of 3 to 4 pips, MarketWatch’s May 2011 review comparing retail
forex brokerages writes that the only brokerage to offer fixed spreads was FX Solutions, which offered 3 pips per EUR/USD transaction (reference).

Under these assumptions, when traders are charged 2 pips per trade, transaction costs explain about 60% of high-leverage traders’ about transaction
costs (e.g., prior to the leverage-constraint high-leverage traders lose 44% on net and 18% gross). The high-leverage traders still perform worse than low-
leverage traders, but not by nearly as much as the difference in their net returns. If we assume that traders are charged 3 to 4 pips per trade, there would be no
difference between high- and low-leverage traders gross returns.

Table A.3
Back-of-the-envelope Calculation of Trading Costs’ Effect on Gross Returns
Description: This table extends the results on traders’ portfolio returns presented in Table 4. Monthly returns are calculated using the account’s balances at the beginning and end of the month,
excluding deposits. The columns in this table present gross returns calculated after adjusting net returns by the assumed amount of transaction costs paid by traders. Transaction costs in retail forex
are the spreads paid by traders. We assume that average spreads during the period we study fell within a range of 2 to 5 pips, where a pip is one one-hundredth of one percent. Stars *, **, and ***
denote significance levels p < 0.10 , p < 0.05 , and p < 0.01, respectively.

U.S. Traders’ Portfolio Returns
gross returns

assumed per-trade spreads: net returns (from Table 4) 2 pips 3 pips 4 pips 5 pips
pre- or post-constraint: pre- post- pre- post- pre- post- pre- post- pre- post-

sample average -0.174 -0.095 -0.063 -0.026 -0.007 0.008 0.043 0.040 0.102 0.074
leverage quintile

high -0.444 -0.195 -0.176 -0.061 -0.028 0.002 0.092 0.060 0.246 0.122
low -0.032 -0.020 -0.002 -0.004 0.012 0.008 0.025 0.020 0.038 0.033

high minus low -0.412*** -0.175*** -0.174*** -0.058* -0.040 -0.006 0.067 0.040 0.207** 0.089
(5.75) (4.07) (3.43) (1.86) (0.71) (0.19) (0.97) (0.90) (2.42) (1.54)
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Appendix A.6: Trade-level Returns

This section shows that the leverage-constraint improves traders’ returns using tests at the trade-level.
These tests look exclusively at the narrow window around the dates of the leverage-constraint (the sample win-
dow September 1, 2010 - December 1, 2010) and the regulation’s announcement (December 1, 2009 - March 1,
2010). Table A.4 presents summary statistics for trade-level outcomes in this window. Table A.5 uses difference-
in-difference regressions to show that the leverage-constraint reduces per-trade losses by about 20 percentage
points. A.3 and A.4 plot the impulse-response of the treatment effect of the leverage-constraint in calendar-time
and trade-time, respectively. These tests show that the U.S. treatment group and European control group have
common trends prior to the regulation. A.5 presents placebo tests for false dates of the regulation. These tests
produce few false positive results, indicating that our tests are unlikely to suffer from Type I error. Table A.6 shows
that the CFTC’s regulation announcement does not significantly affect trade-level outcomes.

Table A.4
Trade-level summary statistics
Description: This table presents summary statistics from the myForexBook account-level database trimmed according to the criteria described
in Section 3. The sample includes trades executed by U.S. and European retail forex traders. Return on investment (roi) for long (short)
positions equals the difference between the nominal value of the currency pair when the position is closed (opened) and when it is opened
(closed), divided by the trader’s dollar stake in the trade. Post constraint equals one if the trade was opened after October 18, 2010, the date by
which brokerages needed to comply with CFTC regulation limiting the leverage available to U.S retail forex traders at 50:1, zero otherwise. Post
announcement equals one if the trade was opened after the CFTC’s announcement in the Federal Registrar on January 13, 2010 of their intent
to restrict traders’ leverage to 10:1, zero otherwise. High leverage trader equals one if trader i uses at least 50:1 leverage on at least one trade
prior to the CFTC regulation, zero otherwise. Holding period is the length of time in hours between when the position is opened and when it is
closed.

Panel A: sample window around leverage-constraint (Sep 1 - Dec 1, 2010)
variable mean std dev median 10th %tile 90th %tile

Dependent variables
Return on investment (ROI) -0.26 4.81 0.016 -2.33 1.79

trade uses leverage > 50:1 (= 1) 0.084
Treatment variables

US trader (= 1) 0.45
Post constraint (= 1) 0.48

High leverage trader (= 1) 0.49
Additional Controls

log trade size (USD) 0.57 2.24 0.69 -2.30 3.04
log holding period (hours) 0.16 2.43 0.073 -2.93 3.39

Number of trades 270,595

Panel B: sample window around regulation announcement (Dec 1, 2009 - Mar 1, 2010)
variable mean std dev median 10th %tile 90th %tile

Dependent variables
Return on investment (ROI) -0.22 3.93 0.087 -3.21 2.44

trade uses leverage > 10:1 (= 1) 0.42
Treatment variables

US trader (= 1) 0.48
Post announcement (= 1) 0.59
High leverage trader (= 1) 0.63

Additional Controls
log trade size (USD) 1.41 1.83 1.61 0 3.40

log holding period (hours) 0.041 2.50 -0.083 -2.99 3.18
Number of trades 167,035
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Table A.5
Leverage-Constraints and Trade-Level Outcomes
Description: This table reports OLS estimates of the following regression:

Y j i t = γi +γt +β1US traderi ×post constraintt +β2trade j i t +ε j i t

where i is a trader, j is a trade, and t is the day trades are opened (execution of trades are recorded at the second). In Panel A, the dependent
variable is trade uses leverage > 50:1, which equals one if the trade uses at least 50:1 leverage. In Panels B and C, the dependent variable is ROI,
which is per-trade return on investment. US trader equals one if the trade is executed by a trader located in the U.S. and equal to zero if located
in Europe. Post constraint equals one if the trade was opened after October 18, 2010, the date by which brokerages needed to comply with
CFTC regulation limiting the leverage available to U.S retail forex traders at 50:1, zero otherwise. High leverage trader equals one if trader i uses
at least 50:1 leverage on at least one trade prior to the CFTC regulation, zero otherwise. The sample period is from September 1 to December
1, 2010. Standard errors are double-clustered by day and trader, and *, **, and *** denote significance levels p < 0.10 , p < 0.05 , and p < 0.01,
respectively.

Panel A: The Binding Effect of the October 2010 Leverage-Constraint on Trading
dep var: trade uses leverage > 50:1 (=1) (1a) (2a) (3a) (4a)

US trader (=1) × post constraint (=1) -0.0491** -0.0523** -0.0520** -0.0520**

(0.022) (0.021) (0.021) (0.021)

log(trade size) 0.0148*** 0.0145***

(0.0043) (0.0043)

log(holding period) -0.00138**

(0.00058)

trader FE x x x x

day FE x x x x

broker-pair FE x x x

Number of trades 270,595 270,541 270,541 270,541

R2 0.51 0.53 0.54 0.54

Panel B: Oct 2010 Leverage-Constraint & Performance, Euro Traders Control Group
dep var: per-trade ROI (1b) (2b) (3b) (4b)

US trader (=1) × post constraint (=1) 0.191** 0.207** 0.204** 0.204**

(0.094) (0.098) (0.098) (0.099)

log(trade size) -0.110*** -0.124***

(0.024) (0.025)

log(holding period) -0.0649***

(0.017)

trader FE x x x x

day FE x x x x

currency risk-free rate differential x x x x

std dev of trader’s weekly returns x x x x

broker-pair FE x x x

Number of trades 270,595 270,541 270,541 270,541

R2 0.037 0.041 0.042 0.042

Panel C: Constraint and Performance; Alt. Control Group – High- vs. Low-Leverage Traders
dep var: per-trade ROI (1c) (2c) (3c) (4c)

high leverage trader (=1) × post constraint (=1) 0.237** 0.252*** 0.247*** 0.253***

(0.098) (0.093) (0.094) (0.093)

log(trade size) -0.110*** -0.124***

(0.024) (0.025)

log(holding period) -0.0652***

(0.016)

trader FE x x x x

day FE x x x x

currency risk-free rate differential x x x x

std dev of trader’s weekly returns x x x x

broker-pair FE x x x

Number of trades 270,595 270,541 270,541 270,541

R2 0.037 0.041 0.042 0.042
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Fig. A.3. Impulse Response of Treatment Effect on Per-Trade Returns
Description: This table reports OLS estimates of the following regression:

ROI j i t = γi +γt +
T+l∑

k=T−l
β1k US traderi × IT+k=t +ε j i t

where i is a trader, j is a trade, and t is a week (trades are recorded by the second). The dependent variable is ROI, which is per-trade return on
investment. US trader equals one if the trade is executed by a trader located in the U.S. and equal to zero if located in Europe. T is the date of
the regulation, i.e. October 18, 2010. IT+ j=t is an indicator variable for weeks surrounding the regulation. Therefore, β j for j = {−T, ...,T } is
the sequence of treatment effects, and hence maps out the impulse response. Standard errors are double-clustered by day and trader, and the
dashed lines are 95% confidence intervals around the point estimate of β j .
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Fig. A.4. Impulse Response of Leverage-Constraint on Per-Trade Returns Using Trade-time
Description: This table reports OLS estimates of the following regression:

ROI j i t = γi +γt +
T+l∑

k=T−l
β1k US traderi × IT+k=t +ε j i t

where i is a trader, j is a trade, and t is a week (trades are recorded by the second). The dependent variable is ROI, which is per-trade return on
investment. US trader equals one if the trade is executed by a trader located in the U.S. and equal to zero if located in Europe. T is the date of
the regulation, i.e. October 18, 2010. IT+ j=t is an indicator variable for weeks surrounding the regulation. Therefore, β j for j = {−T, ...,T } is
the sequence of treatment effects, and hence maps out the impulse response. We sort trades into quartiles, within a trader’s account, according
to their distance from the leverage-constraint. The omitted coefficient is the interaction between US trader and the indicator for the fourth
quartile in distance prior to the leverage-constraint. We restrict this sample to traders that use greater than 50:1 leverage on at least one trade
prior to the leverage-constraint. Standard errors are double-clustered by day and trader, and the dashed lines are 95% confidence intervals
around the point estimate of β j .
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Fig. A.5. Placebo test for the effect of the leverage-constraint
Description, Panel A: This figure illustrates the placebo exercise described in Section ?? and below.
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Description, Panel B: This figure plots kernel density estimates using the Epanechnikov kernel function and a histogram of β1’s from a series
of placebo tests for the effect of the CFTC regulation on trading outcomes. We run the following regression 70 times

Y j i t = γi +γt +β1US traderi ×post constraintt +β2trade j i t +ε j i t

collecting the coefficient, β1 after each iteration. For each iteration, we change the date of post constraint, starting from Sunday, May 3, 2009
rolling forward a week at a time until Aug 29, 2010. Prior to each iteration, we trim the sample using the procedure described in Section 3. This
restricts the sample to include only traders that execute trades before and after the false date for post constraint.
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Table A.6
The Announcement of Regulation and Trade-Level Outcomes
Description: This table reports OLS estimates of the following regression:

Y j i t = γi +γt +β1US traderi ×post announcementt +β2trade j i t +ε j i t

where i is a trader, j is a trade, and t is a day (trades are recorded by the second). In Panel A, the dependent variable is trade uses leverage
> 50:1, which equals one if the trade uses at least 10:1 leverage. In Panels B and C, the dependent variable is ROI, which is per-trade return
on investment. US trader equals one if the trade is executed by a trader located in the U.S. and equal to zero if located in Europe. Post
announcement equals one if the trade was opened after the CFTC’s announcement in the Federal Registrar on January 13, 2010 of their intent
to restrict traders’ leverage to 10:1, zero otherwise. High leverage trader equals one if trader i uses at least 50:1 leverage on at least one trade prior
to the CFTC regulation, zero otherwise. The sample period is from December 1, 2009 to March 1, 2010. Standard errors are double-clustered by
day and trader, and *, **, and *** denote significance levels p < 0.10 , p < 0.05 , and p < 0.01, respectively.

Panel A: The January 2010 Regulation Announcement and High-Leverage Trading
dep var: trade uses leverage > 10:1 (=1) (1a) (2a) (3a) (4a)

US trader (=1) × post announcement (=1) 0.0443 0.0169 0.0205 0.0203

(0.033) (0.030) (0.026) (0.026)

log(trade size) 0.144*** 0.143***

(0.017) (0.017)

log(holding period) -0.00299

(0.0023)

trader FE x x x x

day FE x x x x

broker-pair FE x x x

Number of trades 167,035 166,985 166,985 166,985

R2 0.54 0.56 0.61 0.61

Panel B: The Regulation Announcement and Performance, using Euro control group
dep var: per-trade ROI (1b) (2b) (3b) (4b)

US trader (=1) × post announcement (=1) 0.00425 -0.0125 -0.0152 -0.0236

(0.075) (0.079) (0.078) (0.081)

log(trade size) -0.0649 -0.0946*

(0.047) (0.048)

log(holding period) -0.103***

(0.017)

trader FE x x x x

day FE x x x x

currency risk-free rate differential x x x x

std dev of trader’s weekly returns x x x x

broker-pair FE x x x

Number of trades 167,035 166,985 166,985 166,985

R2 0.053 0.057 0.057 0.060

Panel C: Performance; Alternative Control Group – High- vs. Low-Leverage Traders
dep var: per-trade ROI (1c) (2c) (3c) (4c)

high leverage trader (=1) × post announcement (=1) -0.0544 -0.0696 -0.0763 -0.0665

(0.072) (0.075) (0.075) (0.076)

log(trade size) -0.0655 -0.0950*

(0.047) (0.048)

log(holding period) -0.103***

(0.017)

trader FE x x x x

day FE x x x x

currency risk-free rate differential x x x x

std dev of trader’s weekly returns x x x x

broker-pair FE x x x

Number of trades 167,035 166,985 166,985 166,985

R2 0.053 0.057 0.057 0.060
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Appendix A.7: Alternative Treatment Groups for Tests of Brokerage Capital

Table 6 shows that the CFTC regulation reducing the provision of leverage to retail traders reduced the
amount of capital held by brokerages. The table establishes this finding by comparing CFTC-regulated broker-
ages that have retail forex obligations to those that do not. However, a plausible concern with this test is that –
despite having similar trends prior to the regulation – brokerages without forex obligations are different in unob-
servable ways, and are therefore not suitable to be a control group. Brokerages with and without forex brokerages
could diverge following the regulation because of factors that are unrelated to the leverage restrictions. We address
this concern by showing that the regulation has the strongest effect on brokerages that provided more leverage to
traders prior to the regulation.

To do so, the following variation on Table 6 sorts brokerages into the amount of leverage they offer traders.
We define brokerages as high leverage (low leverage) if they were providing traders with above (less than) 400:1
leverage around the time of the October 2010 CFTC regulation. We assign brokerages to these classifications by
manually searching internet archives, and most of the brokerages were listed on the website: www.100forexbrokers.com.32

We choose 400:1 leverage as a cutoff, because the website specifies 400:1 as the minimum for a broker’s inclusion
in their list of “high leverage brokers”. Seven brokerages classify as high leverage and sixteen as low leverage.

Columns (1) and (2) of Table A.7 run difference-in-difference regressions that compare high leverage broker-
ages against brokerages without forex obligations. Columns (3) and (4) use low leverage brokerages. The dependent
variable is log brokerage excess capital. The point estimate on the difference-in-difference coefficient is between
-0.36 and -0.51 for the high leverage brokerages and -0.19 to 0.23 for low leverage brokerages. These estimates are
close to being significant at the 10% level. The lack of statistical significance is presumably due to having few bro-
kerages with forex obligations after conducting the sample splits. Regardless, the effect of the constraint is larger
for brokerages that provide more leverage, consistent with the CFTC regulation affecting brokerage excess capital
through its effect on retail trader leverage.

Table A.7
Leverage-Constraints and the Excess Capital of High-Leverage-Brokerages
Description: This table reports OLS estimates of the regression

log(excess capital)bt = γb +γt +β1FX brokerb ×post constraintt +εbt ,

where b is a broker and t is a month. The data comes from monthly CFTC Futures Commission Merchants Financial Reports. Excess capital is
the capital in excess of the regulatory requirement, for each brokerage in the CFTC data set. FX broker equals one if the brokerage has any retail
forex obligations after they were required to report these obligations starting in November 2010. Post constraint equals one in months starting
in November 2010, and zero otherwise. Appendix 7 describes how FX brokerages are sorted into high- and low-leverage. Standard errors are
double-clustered by broker and month, and *, ** and *** denote significance at the p < 0.1, p < 0.05 and p < 0.01 levels, respectively.

dep var: brokerage excess capital (1)∗ (2)∗ (3)† (4)†

FX broker high leverage (=1) × post constraint (=1) -0.367 -0.512

(0.29) (0.36)

FX broker low leverage (=1) × post constraint (=1) -0.234** -0.190

(0.12) (0.13)

log net capital requirement -0.274 -0.292

(0.17) (0.18)

brokerage FE x x x x

month FE x x x x

N (broker-month) 1,332 1,332 1,427 1,427

Number of high (or low) leverage brokers 7 7 16 16

R2 0.99 0.99 0.99 0.99

∗sample includes high-leverage FX brokerages and CFTC regulated brokerages w/ no-FX obligations

†sample includes low-leverage FX brokerages and CFTC regulated brokerages w/ no-FX obligations

32An alternative approach to this classification would be to assign brokerages to high leverage or low leverage using the amount of leverage
used by traders in the myForexBook data set. However, there are only seven brokerages that are common to the CFTC’s data set and the
myForexBook data set.
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Appendix A.8: Trader Flows

This section tests for the effect of the leverage-constraint on the entry and exit rates of traders into the retail
forex market. Unfortunately, the CFTC brokerage reports do not list the number of trader accounts. So, we use
the myForexBook account-level data set to approximate account flows. We define trader entry as the first month
a trader is in the data. We define trader exit as the last month that they trade. We then collapse the indicators for
trader entry and exit to the brokerage-month-location level, where location is either traders from the U.S. or from
Europe.

Table A.8 presents difference-in-differences regressions that compare the number of new (or exiting) U.S.
traders to European traders, as a result of the leverage-constraint. The logarithm of new traders is the dependent
variable in columns (1) and (2), and the logarithm of exiting traders is the dependent variable in columns (3) and
(4). The coefficient of interest is the interaction of post constraint and US traders – an indicator that equals one if
the traders come from the U.S. and zero if they come from Europe. The regressions include month, brokerage, and
trader location fixed effects. Columns (2) and (4) have brokerage fixed effects interacted with a time trend, which
accounts for the possibility that the growth and exit rates of new traders can vary by brokerage. This also helps
control for the unconditional growth rate of the membership of the myForexBook website during this period (the
website started in 2009 and its population grew to a peak of around 10,000 traders by the middle of 2011).

The leverage-constraint caused a reduction in trader inflows for new U.S. traders. The constraint reduced
trader outflows, but the estimate is not statistically distinguishable from zero. Moreover, the reduction in inflows
of U.S. traders is larger than the reduction in outflows. The difference-in-difference coefficient for trader inflows is
-0.118, and the sample average of monthly inflows is 1.21, which suggests a 0.118 / 1.21 = 9.8% reduction in inflows.
Using the same calculation, the reduction in outflows is 8.5%. Furthermore, columns (2) and (4) use distributed
lags around the regulation date to test for pre-trends. The effect of inflows is close to zero before the regulation,
but the coefficient falls to around -0.1 persistently thereafter. On the other hand, the effect on outflows is noisy
around the regulation date.

Table A.8
The Effect of the Leverage Regulation on Trader Flows
Description: This table uses account level data from the myForexBook data set collapsed to observations at the level of brokerage, month, and
the geography of traders within the brokerage. It reports OLS estimates of the regression

log(number of traders)bg t = γb +γg +γt +β1US flowsg ×post constraintt +εbg t ,

where b is a broker, g is trader geography (either U.S. or Europe), and t is a month. US flows equals one if the number of traders are from
the U.S. and equal to zero if they are from Europe. Post constraint equals one in months starting in November 2010, and zero otherwise. The
sample period is May 2010 to April 2011 Standard errors are double-clustered by broker and month, and *, ** and *** denote significance at the
p < 0.1, p < 0.05 and p < 0.01 levels, respectively.

trader inflows trader outflows
dep var: log(# new traders + 1) log(# exiting traders + 1)

(1) (2) (3) (4)
US flows (=1) × post constraint (=1) -0.118* -0.134

(0.065) (0.080)
US flows (=1) × Sept 2010 (=1) 0.0160 -0.0459

(0.072) (0.042)
US flows (=1) × Oct 2010 (=1) -0.0122 0.111***

(0.14) (0.019)
US flows (=1) × Nov 2010 (=1) -0.101 0.0258

(0.066) (0.072)
US flows (=1) × Dec 2010 (=1) -0.141*** 0.136

(0.044) (0.090)
US flows (=1) × Jan 2011 (=1) -0.104 -0.0699***

(0.061) (0.0063)
month FE x x x x
US flows FE x x x x
brokerage FE x x
time trend × broker FE x x
mean of dependent variable 1.21 1.48 1.57 1.81
Broker-month-trading region obs. 393 286 345 260
R2 0.75 0.87 0.78 0.84
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