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1 Valuation of Unlevered Equity

The following matrix representation summarizes the dynamics of the three state variables

in the economy.

Xt+1 =

 0

wc

wd

+

ρ 0 0

0 αc 0

0 0 αd

Xt +

σx εx,t+1

sc ηc,t+1

sd ηd,t+1

 (1)

= µ+ ΦXt + ut+1 (2)

where Xt ≡
[
xt vc,t vd,t

]>
. Let Ω denote the covariance matrix of the shocks, Ω ≡

Et
[
ut+1 u

>
t+1

]
.

The log pricing kernel of the Epstein–Zin preference is given as

mt+1 = θ log δ − θ

ψ
∆ct+1 + (θ − 1) rc,t+1 (3)

where rc,t+1 denotes the log gross return on an asset that delivers aggregate consumption

as its dividends each period. The parameter θ ≡ 1−γ
1−1/ψ

, with γ ≥ 0 being the risk-aversion

parameter and ψ ≥ 0 the intertemporal elasticity of substitution (IES) parameter.

Following ?, rc,t+1 is log-linearly approximated as

rc,t+1 = κ0 + κ1 zc,t+1 − zc,t + ∆ct+1 (4)
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where zc,t is the log price-dividend ratio of the claim to aggregate consumption, and κ0

and κ1 are approximating constants that both depend only on the average level of zc.

κ1 =
ez̄c

1 + ez̄c
(5)

κ0 = log (1 + ez̄c)− ez̄c

1 + ez̄c
z̄c (6)

By plugging zc,t = A0 + A>Xt and the formulas above into the Euler equation,

Et [emt+1 erc,t+1 ] = 1, we can derive

A =

(
1− 1

ψ

)(
I − κ1 Φ>

)−1

 1
1
2
(1− γ)

0

 (7)

A0 =
1

1− κ1

{
log δ + κ0 + κ1A

>µ+

(
1− 1

ψ

)
µc + 1

2
θ κ2

1A
>ΩA

}
(8)

Similarly, the log gross return on a firm’s underlying asset (unlevered equity) can be

approximated as

rd,t+1 = κ2 + κ3 zd,t+1 − zd,t + ∆dt+1 (9)

where zd,t represents the firm’s log price-dividend ratio, and κ2 = log (1 + ez̄d)− ez̄d
1+ez̄d

z̄d

and κ3 = ez̄d
1+ez̄d

. By plugging zd,t = B0 +B>Xt again into the Euler equation, its solutions

can be derived as

B =
{
I − κ3Φ>

}−1


φ− 1

ψ

1
2

{
(γ − φ)2 − (γ − 1)

(
γ − 1

ψ

)}
1
2

 (10)

B0 =
1

1− κ3

[
θ log δ + (φ− γ)µc + (θ − 1)

{
κ0 + κ1(A0 + A>µ)− A0

}
+κ2 + κ3B

>µ+ 1
2
{(θ − 1)κ1A+ κ3B}>Ω {(θ − 1)κ1A+ κ3B}

]
(11)

Note that B3 is not zero because of Jensen’s inequality.
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2 Analytic Solution of Debt and Levered Equity

Let’s begin with a lemma that is critical to derive the analytic solution of debt and

levered equity.

Lemma 1. If i is a (2 × 1) constant vector and X = (X1, X2)> is a bivariate normal

with mean vector µ and covariance matrix Σ, then

∫ a<X2<b

eX
>i dX = eµ

>i+ 1
2
i>Σ i P (a < X2 < b ; µ∗,Σ ) (12)

where P ( · ; µ∗,Σ ) is the bivariate density function with mean vector µ∗ = µ + Σ i and

covariance matrix Σ.

In this internet appendix, we assume the traditional ?’s payoff functions.

FT =

R (VT +DT )

K
, ST =

0 if VT +DT < K

VT +DT −K if VT +DT ≥ K
(13)

where FT denotes the payoff to corporate debts at maturity, ST the payoff to levered

equity, VT the value of underlying assets, DT dividends, K the principal amount of

debts, and R the recovery rate in case of bankruptcy.

Suppose the maturity comes in one time period, T = t + 1. Today’s price of these

assets can be derived as

Ft = Et [emt+1Ft+1]

= Ke−rf,t G (ω − σr) +RVtG (−ω) (14)

St = Et [emt+1St+1]

= VtG(ω)−Ke−rf,tG(ω − σr) (15)

where ω ≡ {ln (Vt/K) + rf,t + 1
2
σ2
r} /σr, σ2

r ≡ vart (rd,t+1) = φ2 vc,t + vd,t + κ2
3B
>ΩB is

the variance of unlevered asset returns, and g( · ) and G( · ) denote the pdf and cdf of

standard normal random variable. Note that ω implies the firm’s leverage relative to its

volatility. Its comparative statistics are

∂ ω

∂Vt
=

1

σrVt
,

∂ ω

∂σr
= 1− ω

σr
,

∂ ω

∂rf,t
=

1

σr
(16)
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In the rest of this section, it is assumed that the firm is not underwater, i.e., Vt ≥ K e−rf,t ,

thus ω > 0.

The partial derivatives of the levered claims can be derived like those of ?,

∂St
∂Vt

= G(ω)
∂Ft
∂Vt

= RG(−ω) +
1−R
σr

g(ω) (17)

∂St
∂σr

= Vt g(ω)
∂Ft
∂σr

= −Vt g(ω)

{
R + (1−R)

ω

σr

}
(18)

∂St
∂rf,t

= K e−rf,t G(ω − σr)
∂Ft
∂rf,t

= −K e−rf,t G(ω − σr) +
1

σr
Vt g(ω)(1−R) (19)

And the comparative statistics of the Black-Scholes inputs with regard to our state

variables are

∂Vt
∂xt

= VtB(1)
∂Vt
∂vc,t

= VtB(2)
∂Vt
∂vd,t

= VtB(3) (20)

∂σr
∂xt

= 0
∂σr
∂vc,t

=
φ2

2σr

∂σr
∂vd,t

=
1

2σr
(21)

∂rf,t
∂xt

=
1

ψ

∂rf,t
∂vc,t

=
1− γ (1 + ψ)

2ψ

∂rf,t
∂vd,t

= 0 (22)

where B(i) denotes the i-th element of the column vector B in equation (??).

One interesting implications is that ∂Vt
∂vc,t

= VtB(2) < 0 if 1 ≤ φ ≤ 2γ − 1 and ψ > 1,

that is, (i) (φ ≤ 2γ−1) if Jensen’s inequality is not large enough to overcome the increase

in risk premium and (ii) (φ ≥ 1) the claim to dividends is not a hedge to consumption

risk. In other words, the unlevered asset value Vt can actually increase with vc,t if φ is

either negative or excessively large. We will assume that φ is within the given range so

that B(2) < 0.

Now, let’s study St’s comparative statistics with each of the state variables.

(1) St and xt

∂St
∂xt

= G(ω)VtB(1) +K e−rf,t G(ω − σr)
1

ψ
> 0 always (23)
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(2) St and vc,t

∂St
∂vc,t

= G(ω)︸ ︷︷ ︸
(+)

VtB(2)︸ ︷︷ ︸
(−)

+Vt g(ω)︸ ︷︷ ︸
(+)

φ2

2σr︸︷︷︸
(+)

+K e−rf,t G(ω − σr)︸ ︷︷ ︸
(+)

1− γ(1 + ψ)

2ψ︸ ︷︷ ︸
(−) if γ>1

(24)

≤ Vt

{
G(ω)B(2) + g(ω)

φ2

2σr

}
(25)

≤ Vt

{
G(ω)B(2) + g(ω)

φ2

2κ3

√
B>ΩB

}
(26)

≤ Vt

{
G(ω)B(2) + g(ω)

φ2

2κ3

(
−scB(2)

)} (27)

∴
∂St
∂vc,t

< 0 if B(2) < −
φ√

2κ3sc
(28)

(3) St and vd,t
∂St
∂vd,t

= G(ω)VtB(3) + Vt g(ω)
1

2σr
> 0 always (29)

Comparative statistics of corporate debts, Ft, are more complicated as they depend

on the firm’s leverage. For example, the long-run growth rate, xt, can move Ft in either

direction since it raises not only the underlying asset value (Vt) but also the riskfree

interest rate (rf,t). Let’s assume R = 1 for the sake of simplicity. Ft’s comparative

statistics are derived as

(1) Ft and xt

∂Ft
∂xt

= G(−ω)VtB(1) −Ke−rf,tG(ω − σr)
1

ψ
(30)

=
1

ψ
Ke−rf,tG(−ω)︸ ︷︷ ︸

(+)

{
φψ − 1

1− κ3ρ
eσrω−

1
2
σ2
r − G(ω − σr)

G(−ω)

}
(31)

Since G(ω−σr)
G(−ω)

∈ (0,∞) is monotonically increasing in ω and rises faster than eσrω,

there exists ω∗ such that ∂Ft

∂xt
(ω∗) = 0. Thus,∂Ft

∂xt
> 0 if leverage is high, i.e., ln(Vt/K) < σr ω

∗ − rf,t − 1
2
σ2
r

∂Ft

∂xt
< 0 if leverage is low, i.e., ln(Vt/K) > σr ω

∗ − rf,t − 1
2
σ2
r

(32)
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(2) Ft and vc,t

∂Ft
∂vc,t

= G(−ω)VtB(2) − Vt g(ω)
φ2

2σr

−Ke−rf,tG(ω − σr)
1− γ (1 + ψ)

2ψ
(33)

lim
ω→−∞

∂Ft
∂vc,t

= VtB(2) < 0 (34)

lim
ω→∞

∂Ft
∂vc,t

= Ke−rf,t
γ (1 + ψ)− 1

2ψ
> 0 (35)

Since limω→−∞
∂Ft

∂vc,t
< 0, limω→∞

∂Ft

∂vc,t
> 0 and ∂Ft

∂vc,t
is continuous in ω, there exists

ω̂∗ such that ∂Ft

∂vc,t
(ω̂∗) = 0. Therefore, ∂Ft

∂vc,t
< 0 if leverage is high, i.e., ln(Vt/K) < σr ω̂

∗ − rf,t − 1
2
σ2
r

∂Ft

∂vc,t
> 0 if leverage is low, i.e., ln(Vt/K) > σr ω̂

∗ − rf,t − 1
2
σ2
r

(36)

(3) Ft and vd,t

Two opposite channels are effective: (i) vd,t ↑⇒ Vt ↑ (Jensen’s inequality) ⇒ Ft ↑
and (ii) vd,t ↑⇒ σr ↑⇒ Ft ↓.

∂Ft
∂vd,t

= G(−ω)VtB(3) − Vt g(ω)
1

2σr
(37)

= VtG(−ω)

{
B(3) −

g(ω)

1−G(ω)

1

2σr

}
(38)

Since g(ω)
1−G(ω)

∈ (0,∞) is monotonically increasing in ω, there exists ω̃∗ such that
∂Ft

∂vd,t
(ω̃∗) = 0. However, since g(ω)

1−G(ω)
> 0.79 for ω > 0 as assumed previously,

∴
∂Ft
∂vd,t

< 0 if the Jensen’s inequality is not dominant, i.e., B(3) ≤
0.79

2σr
(39)

In contrast to the previous two cases, the comparative statics of credit spreads, cr ≡
− ln(Ft/K)− rf,t, are much simpler.
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(1) cr and xt

∂cr

∂xt
= −VtG(−ω)

Ft

{
B(1) +

1

ψ

}
< 0 (40)

(2) cr and vc,t

∂cr

∂vc,t
= −Vt

Ft


B(2)︸︷︷︸

(−)

+
1− γ(1 + φ)

2ψ︸ ︷︷ ︸
(−)

G(−ω)− φ2

2σr︸ ︷︷ ︸
(−)

g(ω)

 > 0 (41)

(3) cr and vd,t

∂cr

∂vd,t
= − 1

Ft

∂Ft
∂vd,t

> 0 (42)

Now let’s move on to expected excess returns. The excess returns of unlevered assets

are determined by the covariance of its return with the pricing kernel,

− σmr ≡ − covt (mt+1, rd,t+1) = φ γ vc,t + constant (43)

Those of levered equity can be derived as

eerS ≡ ln

(
Et[St+1]

St

)
− rf,t (44)

exp(eerS) =
Vt e

−σmrG
(
ω − σmr

σr

)
−Ke−rf,tG

(
ω − σr − σmr

σr

)
VtG (ω)−Ke−rf,tG (ω − σr)

(45)

∴ eerS ≈ −σmr
Vt
St
G(ω)︸ ︷︷ ︸

leverage effect

by the Taylor approximation (46)
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And below are the excess returns of corporate bonds.

eerF ≡ ln

(
Et[Ft+1]

Ft

)
− rf,t (47)

exp(eerF ) =
Vt e

−σmrG
(
−ω + σmr

σr

)
+Ke−rf,tG

(
ω − σr − σmr

σr

)
VtG (−ω) +Ke−rf,tG (ω − σr)

(48)

∴ eerF ≈ −σmr
Vt
Ft
G(−ω) (49)

Note that the value-weighted average of stock and corporate bond excess returns is

equal to the risk premium of the unlevered asset.

St
Vt
eerS +

Ft
Vt
eerF = −σmr (50)

Let’s define the leverage factor of stocks as follows.

LS(ω) ≡ Vt
St
G(ω) =

1

1− lS(ω)
(51)

lS(ω) ≡ e−σrω+ 1
2
σ2
r
G(ω − σr)
G(ω)

(52)

Both LS(ω) and lS(ω) are monotonically decreasing in ω. They will turn useful in the

derivation of the comparative statistics of eerS that follow.

(1) eerS and xt
∂ lS(ω)

∂xt
=
∂ lS(ω)

∂ ω︸ ︷︷ ︸
(−)

· 1

σr

{
B(1) +

1

ψ

}
︸ ︷︷ ︸

(+)

< 0 (53)

Thus,
∂ eerS
∂xt

< 0 (54)

(2) eerS and vc,t

it is difficult to tell the sign of ∂ eerS
∂vc,t

as it not only raises risk premium (−σmr) but

also affects the leverage.

(3) eerS and vd,t
∂ eerS
∂vd,t

< 0 if ω > σr (55)
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Similarly, let’s define the leverage factor of corporate debts as follows.

LF (ω) ≡ Vt
Ft
G(−ω) =

1

1 + lF (ω)
(56)

lF (ω) ≡ e−σrω+ 1
2
σ2
r
G(ω − σr)
G(−ω)

(57)

lF (ω) is monotonically increasing in ω and LF (ω) monotonically decreasing.

(1) eerF and xt
∂ lF (ω)

∂xt
=
∂ lF (ω)

∂ω︸ ︷︷ ︸
(+)

· 1

σr

{
B(1) +

1

ψ

}
︸ ︷︷ ︸

(+)

> 0 (58)

Thus,
∂ eerF
∂xt

< 0 (59)

At first glance, this result may look counter-intuitive since St

Vt
eerS + Ft

Vt
eerF = −σmr,

∂ eerS
∂xt

< 0, ∂ eerF
∂xt

< 0 but ∂σmr

∂xt
= 0. Note that, however, the value-weights themselves,

St

Vt
and Ft

Vt
, are also determined by xt. In other words, xt is related to the spread

between eerS and eerF .

(2) eerF and vc,t
∂ lF
∂vc,t

< 0 if ω > σr (60)

Thus,
∂ eerF
∂vc,t

= φ γ LF (ω)− σmr
∂ LF
∂vc,t

> 0 (61)

(3) eerF and vd,t

∂ lF
∂vd,t

< 0 if ω > σr and B(3)(Jensen’s inequality) is not strong (62)

Thus,
∂ eerF
∂vd,t

> 0 (63)
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