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1 Valuation of Unlevered Equity

The following matrix representation summarizes the dynamics of the three state variables

in the economy.
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where X; = [xt Vet vd’f} . Let Q denote the covariance matrix of the shocks, 2 =
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The log pricing kernel of the Epstein—Zin preference is given as
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where 7,41 denotes the log gross return on an asset that delivers aggregate consumption
as its dividends each period. The parameter § = ﬁ, with v > 0 being the risk-aversion

parameter and ¢ > 0 the intertemporal elasticity of substitution (IES) parameter.

Following ?, 7.:41 is log-linearly approximated as
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where z.; is the log price-dividend ratio of the claim to aggregate consumption, and &

and k; are approximating constants that both depend only on the average level of z¢.
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By plugging z.: = Ay + AT X, and the formulas above into the Euler equation,

E, [em™+1 emett1] = 1, we can derive
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Similarly, the log gross return on a firm’s underlying asset (unlevered equity) can be

approximated as
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By plugging z4; = By+ B X; again into the Euler equation, its solutions

where z;; represents the firm’s log price-dividend ratio, and ko = log (1 + e*@) — Zq
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can be derived as
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Note that Bj is not zero because of Jensen’s inequality.



2 Analytic Solution of Debt and Levered Equity

Let’s begin with a lemma that is critical to derive the analytic solution of debt and

levered equity.

Lemma 1. Ifi is a (2 x 1) constant vector and X = (X, X5)" is a bivariate normal

with mean vector p and covariance matriz 32, then
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where P (- p*, %) is the bivariate density function with mean vector p* = p+ ¥ and

covariance matriz Y.
In this internet appendix, we assume the traditional ?’s payoff functions.
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where Fr denotes the payoff to corporate debts at maturity, St the payoff to levered
equity, Vr the value of underlying assets, Dy dividends, K the principal amount of

debts, and R the recovery rate in case of bankruptcy.

Suppose the maturity comes in one time period, T' = t + 1. Today’s price of these

assets can be derived as
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where w = {In (V;/K) + rys + 102} Jo,, 0% = vary (Tas41) = ¢*vey + vay + k2 BTQ B is
the variance of unlevered asset returns, and g(-) and G(-) denote the pdf and cdf of
standard normal random variable. Note that w implies the firm’s leverage relative to its

volatility. Its comparative statistics are
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In the rest of this section, it is assumed that the firm is not underwater, i.e., V; > K e "ft,
thus w > 0.

The partial derivatives of the levered claims can be derived like those of 7,
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And the comparative statistics of the Black-Scholes inputs with regard to our state

variables are
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where B(;) denotes the i-th element of the column vector B in equation (?7?).

One interesting implications is that g}‘ft =ViBip <0if1<¢<2y—1 and ¢ > 1,
that is, (i) (¢ < 2y—1) if Jensen’s inequalify is not large enough to overcome the increase
in risk premium and (ii) (¢ > 1) the claim to dividends is not a hedge to consumption
risk. In other words, the unlevered asset value V; can actually increase with v.; if ¢ is
either negative or excessively large. We will assume that ¢ is within the given range so

that B(g) < 0.

Now, let’s study S;’s comparative statistics with each of the state variables.
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(2) Sy and v,
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Comparative statistics of corporate debts, F}, are more complicated as they depend
on the firm’s leverage. For example, the long-run growth rate, x;, can move F; in either
direction since it raises not only the underlying asset value (V;) but also the riskfree
interest rate (ry;). Let’s assume R = 1 for the sake of simplicity. Fi’s comparative

statistics are derived as
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Since € (0,00) is monotonically increasing in w and rises faster than e’
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there exists w* such that g—ff (w*) = 0. Thus,

g—ﬁ >0 if leverage is high, i.e., In(V;/K) < o,w* —rp; — Lo? (32)
8h <0 ifleverage is low, i.e., I(V;/K) > o,w* —rpy — 07



(2) F; and v,
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Since lim,,_,_ o < 0, limy, 0o Fos > 0 and 2L B is continuous in w, there exists
&* such that 25 (@ tt(A*) =0. Therefore
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gft >0 if leverage is low, i.e., In(V;/K) > o,.0* —rp; — Lo?

(3) Fy and vy
Two opposite channels are effective: (i) vqy T= Vi T (Jensen’s inequality) = F; 1
and (ii) vg¢ T= o, T= F; |

OF;
avd,t

= G(—w) Vi By — Vig(w) By

=V G(—w) {B(g) — 1;q<—gzw)2(17r} (38)

9(w)

Since € (0,00) is monotonically increasing in w, there exists ©* such that
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(f)av—ﬁ(cb*) = 0. However, since ; fg”()w) > 0.79 for w > 0 as assumed previously,
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In contrast to the previous two cases, the comparative statics of credit spreads, cr =

—In(F;/K) — rs4, are much simpler.
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Now let’s move on to expected excess returns. The excess returns of unlevered assets

are determined by the covariance of its return with the pricing kernel,
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Those of levered equity can be derived as
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And below are the excess returns of corporate bonds.
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Note that the value-weighted average of stock and corporate bond excess returns is

equal to the risk premium of the unlevered asset.
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Let’s define the leverage factor of stocks as follows.
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Both Lg(w) and lg(w) are monotonically decreasing in w. They will turn useful in the

derivation of the comparative statistics of eerg that follow.
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(2) eerg and v,
it is difficult to tell the sign of %evits as it not only raises risk premium (—o,,,) but

also affects the leverage.
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Similarly, let’s define the leverage factor of corporate debts as follows.
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At first glance, this result may look counter-intuitive since %667‘5 + %667’]:‘ = —Omr,
a;% <0, ag%f < 0 but 88"—;’;* = 0. Note that, however, the value-weights themselves,
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A and %, are also determined by x;. In other words, x; is related to the spread
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