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Appendix A. Proof of Proposition 1

Assume that (c, (x, z)) is a feasible strategy for initial conditions (Wt, Yt). Then, for

all α > 0, we first show that (αc, (αx, αz)) is a feasible strategy for initial conditions

(αWt, αYt). Consider the dynamics for the wealth process Wα, with initial conditions

(αWt, αYt), following the consumption and investment plan (αc, (αx, αz)). We have

dWαs = αWsds− αcsds+ αYsds+ αz⊺s (µ− r1)ds+ αz⊺sσdws = αdWs, (1)

therefore, Wαs = αWs. Similarly, we have Yαs = αYs. The investment strategy satisfies

the margin requirement since

λ⊺(αz) = αλ⊺z ≤ αW. (2)

It follows that

F (αW,αY ) ≤ α1−γF (W,Y ), (3)

since the utility function in homogeneous of degree 1− γ. In addition

F (W,Y ) = F (α−1αW,α−1αY ) ≤ αγ−1F (αW,αY ), (4)
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so given Eq. (3) in fact we have

F (αW,αY ) = α1−γF (W,Y ). (5)

Appendix B. Proof of Proposition 2

To show that F is nondecreasing in (Wt, Yt) is simple, since given an initial endow-

ment (Wt, Yt), it is clear that starting with wealth W ′
t > Wt or income Y ′

t > Yt at time

t, the optimal strategy for the initial condition (Wt, Yt) is still admissible and poten-

tially nonoptimal for the problem with initial conditions (W ′
t , Y

′
t ). This implies that F

is nondecreasing in W and Y. To show concavity, consider two initial conditions (Wt, Yt)

and (W ′
t , Y

′
t ) and α ∈ (0, 1). Denote (c, (x, z)) and (c′, (x′, z′)) the optimal strategies

respectively for the two initial conditions. Then, the strategy

S : (αc+ (1− α)c′, αx+ (1− α)x′, αz + (1− α)z′), (6)

is admissible for the initial condition

I : (αWt + (1− α)W ′
t , αYt + (1− α)Y ′

t ). (7)

Denoting W α the wealth process associated with strategy S and initial condition I, for

all times s, we have

W α
s = αWs + (1− α)W ′

s, (8)

and similarly for the income process

Y α
s = αYs + (1− α)Y ′

s . (9)

The margin constraint is satisfied since

λ⊺(αz + (1− α)z′) = αλ⊺z + (1− α)λ⊺z′ ≤ αW + (1− α)W ≤W, (10)
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as both z and z′ are feasible. Finally, by strict concavity of the utility function u, we

have

Et

[∫ ∞

t

u (αcs + (1− α)c′s) e
−θsds

]
> Et

[∫ ∞

t

(αu(cs) + (1− α)u(c′s)) e
−θsds

]
, (11)

which implies that

F (αWt + (1− α)W ′
t , αYt + (1− α)Y ′

t ) > αF (Wt, Yt) + (1− α)F (W ′
t , Y

′
t ). (12)

Appendix C. Proof of Proposition 3

We note that the assumption that (σσ⊺)−1η ∈ R
N
+ ensures that all assets are held

long in the portfolio when the margin requirement is not binding.

The assumption that all the entries off the diagonal of the inverse covariance matrix

(σσ⊺)−1 are non-positive implies that (σσ⊺)−1 = αIN − P, where α > 0 and P is a

matrix with non-negative elements. Since (σσ⊺)−1 is positive definite, all its eigenvalues

are positive, which implies that the spectral radius of matrix P/α must be strictly less

than one. In spectral theory, this class of matrices is called Z-matrices (or negated

Metzler matrices). Note that we have

σσ⊺ =
1

α
(IN −

P

α
)−1 =

1

α

∞∑

n=0

(
P

α

)n

<∞ (13)

as the spectral radius of P/α, is strictly less than one. We conclude that all the entries

of the covariance matrix σσ⊺ are non-negative, i.e. all the assets are pairwise positively

correlated. The assumption is satisfied for instance when (i) the returns of all the N

assets are independent, or (ii) when the returns of all the assets have pairwise the same

non-negative coefficient of correlation ρ ≥ 0.
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To see this last point, consider the case where all pairwise correlations are positive

and equal to ρ > 0. Let M = (σσ⊺)−1 = [mij ]. It is easy to check that

mii =
1 + (N − 2)ρ

(1− ρ)(1 + (N − 1)ρ)

1

σ2
i

> 0

mij = −
ρ

(1− ρ)(1 + (N − 1)ρ)

1

σiσj
< 0, i 6= j.

(14)

We proceed with the proof of Proposition 3 in three steps.

Step 1: Normalization of the Program.

First, we rewrite the optimization problem. When labor income is uncorrelated with

the market, we have

max
ω∈RN

+

ω⊺η −
y

2
ω⊺(σσ⊺)ω, s.t. ω⊺λ+ ≤ 1, (15)

where η = µ − r1. For k = 1, . . . , N, set ω̂i = ωi/λ
+
i , η̂i = ηi/λ

+
i and σ̂i = σi/λ

+
i . The

optimization program is equivalent to

max
ω̂∈RN

+

ω̂⊺η̂ −
y

2
(ω̂)⊺(σ̂σ̂⊺)ω̂, s.t. ω̂⊺1 ≤ 1. (16)

Observe that (σσ⊺)−1η ∈ R
N
+ if and only if (σ̂σ̂⊺)−1η̂ ∈ R

N
+ . Thus, without loss of

generality, we can assume that the margin coefficients are the same for all the assets and

can be normalized to one.

Step 2: Reduced Effective Domain.

In Lemma H.1 in Appendix H, we discuss the dual formulation of the optimization

problem, define the effective domain Na,b and show that

Na,b = {(a, b) ∈ R+ × R
N
+ , (1− λ+i )a ≤ bi ≤ (1 + λ−i )a}. (17)

When short sales are prohibited and margin coefficients are normalized to one, the effec-

tive domain is Na,b reduces to R+ × R
N
+ . The corresponding dual optimization program

is

min
(a,b)∈R+×R

N
+

ay +
1

2
(η + b− a1)⊺(σσ⊺)−1(η + b− a1). (18)
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We note that asset i is not included in the portfolio if and only if b∗i > 0, i ∈ {1, . . . , N}.

Step 3: Supermodularity Property.

As shown in Appendix I, the optimal control variable a∗ is a non-increasing function

of the lifetime relative risk aversion, y. For y ≥ y∗B, we know that b∗ ≡ 0. Next, assume

that y < y∗B so that a∗(y) > 0 and observe that

1

2
(η+b−a∗(y)1)⊺(σσ⊺)−1(η+b−a∗(y)1) =

(a∗(y))2

2
(η̂∗(y)+b′−1)⊺(σσ⊺)−1(η̂∗(y)+b′−1),

(19)

where b′ = b/a∗(y) ∈ R
N
+ and η̂∗(y) = η/a∗(y). The dual optimization problem can be

seen as an N player game, where player i chooses quantity b′i ∈ R+ in order to maximize

profit πi where

πi(b
′
i, b

′−1
i ; y) = −

1

2
(η̂∗(y) + b′ − 1)⊺(σσ⊺)−1(η̂∗(y) + b′ − 1). (20)

For all (i, j) ∈ {1, . . . , N}2, i 6= j, we have

∂2πi
∂b′i∂b

′
j

= −e⊺i (σσ
⊺)−1ej ≥ 0

∂2πi
∂bi∂y

=
∂a∗(y)

∂y

1

(a∗(y))2
e⊺i (σσ

⊺)−1η ≤ 0.

(21)

From Eq. (21), we have that this game satisfies the supermodularity conditions, so

its unique Nash equilibrium (b∗1, b
∗
2, . . . , b

∗
N ) is non-increasing in the lifetime relative risk

aversion, y, see Topkis (1998) and lecture notes by Levin (2006). This implies that,

should asset i not be the asset with the largest expected excess return, if y∗D,i = sup

{y ≥ 0, b∗i (y) = 0}, then for all y > y∗D,i, b
∗
i (y) = 0, i.e., asset i is optimally held in the

portfolio as long as y > y∗D,i, but is not included in the portfolio for all y ≤ y∗D,i. As in

the case of assets with independent returns, there are N + 1 regions.
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Appendix D. Proof of Proposition 4

For y > y∗B, optimal allocation in asset k is given by

ω∗
k =

µk − r

yσ2
k

. (22)

For y slightly below y∗B, we have

ω∗
k =

1

yσ2
k

(µk − r − ψN(λ
∗, y)) , (23)

and the Lagrange multiplier ψN(λ
∗, y) is equal to

ψN (λ
∗, y) =

α⊺ξ − y

α⊺1
, (24)

where

ξk =
µk − r

λ∗k
, (25)

and

αk =

(
λ∗k
σk

)2

, k ∈ {1, . . . , N}. (26)

Since for all k ∈ {1, . . . , N}, we must have

ω∗
k

λ∗k
≥ 0, (27)

it implies that λ∗k and µk − r must have the same sign, so that ξk > 0. It is possible to

rewrite the optimal asset allocation as

ω∗
k =

αk

yλ∗kα
⊺1

(y − α⊺(ξ − ξk1)). (28)

At y = y∗B, we must have

ψN (λ
∗, y∗B) = 0, (29)

which leads to

y∗B = α⊺ξ. (30)
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Next, without loss of generality, assume that 0 < ξN < ξN−1 < · · · < ξ1. Since ξ ≥ 0 and

α ≥ 0, it is easy to see that as y decreases, asset allocation ω∗
N is the first allocation to

hit zero at

y∗N,D = α⊺(ξ − ξN1). (31)

More generally, for K ∈ {1, . . . , N} define the dropping cutoff

y∗K,D = (IKα)
⊺
[
IK(ξ − ξK1)

]
, (32)

and by convention, set y∗N+1,D = y∗B; observe that 0 = y∗1,D < y∗2,D < · · · < y∗N+1,D. When

K assets are held in the portfolio, optimal allocation in asset k is given by

ω∗
k =

µk − r − ψK(λ, y)λk
yσ2

k

. (33)

It is easy to see that for
ω∗

k

λk
to be positive, we must have µk−r

λk
positive as ψK(λ, y) > 0.

This implies that the vector of margin coefficients must be the same for all y ≤ y∗B, i.e.

λ = λ∗. Without loss of generality we can assume that the excess return of every asset is

positive, and, by Proposition C, there are exactly N +1 regions: for y∗K,D < y < y∗K+1,D,

only the first K assets are held in the portfolio, K ∈ {1, . . . , N} with

ω∗
k =

αk

yλ∗k

[
y − y∗K,D

]+

(IKα)⊺1
, k = 1, . . . , N. (34)

Appendix E. Proof of Proposition 5

The margin constraint is equivalent to 2N linear constraints of the form λ⊺z ≤ W,

where λ ∈ Λ. Each linear constraint is defined by its vector λ. Note that at most

N constraints can be binding at the same time. If exactly 2 constraints are binding,

constraints p and q respectively defined by vectors λ(p) and λ(q), are binding, it must

be the case that vectors λ(p) and λ(q) have N − 1 components in common; if the kth

component λpk 6= λqk, then z∗k = 0, i.e. asset k is dropped out of the portfolio. More

generally, if exactly K + 1 constraints are binding, K assets have been dropped out of

the portfolio and, the vectors
{
λ(i)
}K+1

i=1
of the binding constraints must have N − K
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components in common. The Hamilton-Jacobi-Bellman (HJB) equation for the primal

value function F is

θF = max
z
W

∈Q

γ(F1)
γ−1

γ

1− γ
+ (rW + Y )F1 +mY F2 +

Σ⊺Σ +Θ⊺Θ

2
Y 2F22

+ z⊺
(
(µ− r1)F1 + σΣY F12

)
+
z⊺σσ⊺z

2
F11.

(35)

Since F (W,Y ) = Y 1−γf(W
Y
), the maximization program is equivalent to

max
ω∈Q

ω⊺(η + yσΣ)− y
2
ω⊺σσ⊺ω, (36)

with ω = z/W and lifetime relative risk aversion

y = −
WF11

F1

= −
vf ′′(v)

f ′(v)
, (37)

the program defined in Eq. (36) is well defined, since, for y > 0, the objective function is

strictly concave and the margin constraint is convex, so there is a unique solution that,

from the maximum theorem, is continuous in y.

Case η = 0.

In this case, the program defined in Eq. (36) is independent of the parameter y, so

the fraction of wealth invested in each asset is constant. The unconstrained allocation

is
z

W
= (σσ⊺)−1σΣ. (38)

If

max
λ∈Λ

(
λ⊺(σσ⊺)−1σΣ

)
≤ 1, (39)

the margin constraint is never binding, so

z∗

W
= (σσ⊺)−1σΣ. (40)

If, on the other hand,

max
λ∈Λ

(
λ⊺(σσ⊺)−1σΣ

)
> 1, (41)
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the constraint is always binding. Depending of the parameters values, K assets are

optimally held in the portfolio, with K = 1, . . . , N. More specifically, assuming that

assets N,N − 1, . . . , K + 1 are dropped from the portfolio, K assets remain if and only

if for exactly K assets

max
λ∈Λ

(λke
⊺

kIKω
∗) > 0, k = 1, . . . , K, (42)

with

IKω
∗ =

(IKσσ
⊺I⊺K)

−1IKσΣ+ (1− λ⊺I⊺K(IKσσ
⊺I⊺K)

−1IKσΣ)IKλ

λ⊺I⊺K(IKσσ
⊺I⊺K)

−1IKλ
(43)

and z∗k = 0 for k = K +1, . . . , N . The proof is the same as in the case η 6= 0 (see below)

and is therefore omitted.

Case η 6= 0.

Since we intend to achieve a maximum, the smaller the number of constraints that

are binding, the higher the maximum value. First we look at the values of y such that

the margin constraint is not binding.

Nonbinding region. The first order condition leads to

ω∗ =
(σσ⊺)−1

y
(η + yσΣ). (44)

To satisfy the margin constraint, we must have

max
λ∈Λ

(ω∗)⊺λ ≤ 1. (45)

First, we characterize the binding cutoff y∗B. As long as the constraint is not binding,

the optimal asset allocation is given by Eq. (44). Define

y∗B = max
λ∈Λ

λ⊤(σσ⊤)−1η

1− λ⊤(σσ⊤)−1σΣ
. (46)

Since Λ is discrete and finite, the maximum is attained for some λ = λ∗B; by construction,

we have

(λ∗B)
⊤ (σσ

⊤)−1

y∗B
(η + y∗BσΣ) = 1, (47)
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so the constraint is binding at y = y∗B. Using Eq. (44), and the condition on the matrix

JK in Eq. (21) of the paper, it is easy to see that for y > y∗B, max
λ∈Λ

λ⊤
(
z∗

W

)
< 1, so the

constraint is not binding. Finally, for the constraint to be binding at y = y∗B, it is easy

to verify that vector λ∗B (at y = y∗B), must be such that the sign of λ∗B,i and ω
∗
i given by

Eq. (44) is the same for all i = 1, . . . , N.

Case Θ = 0. Using Eq. (44), we obtain the following reduced HJB equation

(
θ + (γ − 1)(m− γ

Σ⊺Σ

2
)

)
f(v) =

γ

1− γ
(f ′(v))

γ−1

γ + f ′(v) +B−1vf ′(v)

−
1

2
η⊺(σσ⊺)−1η

(f ′(v))2

f ′′(v)
.

(48)

Consider the Legendre transform: x = f ′(v), v = −J ′(x) and f(v) = J(x) − xJ ′(x). It

follows that function J must solve the following linear ODE

(
θ + (γ − 1)(m− γ

Σ⊺Σ

2
)

)
J(x) =

γ

1− γ
x

γ−1

γ + x

+ (θ − B−1 + (γ − 1)(m− γ
Σ⊺Σ

2
)xJ ′(x)

+
1

2
η⊺(σσ⊺)−1ηx2J ′′(x).

(49)

The general solution is

J(x) =
γAx

γ−1

γ

1− γ
+Bx+

γK

β − 1 + γ
x

β−1+γ
γ +

γL

δ − 1 + γ
x

δ−1+γ
γ , (50)

where K and L are constants and β and δ are respectively the positive and negative

root of the quadratic

1

2γ2
(
η⊺(σσ⊺)−1η

)
x2 +

(
A−1 − B−1 −

1

2γ2
η⊺(σσ⊺)−1η

)
x = A−1. (51)

We note that if x is a root of the quadratic

(
θ + (γ − 1)(m− γ

Σ⊺Σ

2
)

)
= (θ−B−1+(γ− 1)(m− γ

Σ⊺Σ

2
)x+

1

2
η⊤(σσ⊺)−1ηx2, (52)
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then z = γ(x− 1) + 1 is a root of the quadratic

1

2

(
η⊤(σσ⊺)−1η

)
x2 +

(
A−1 − B−1 −

1

2
η⊤(σσ⊺)−1η

)
x = A−1. (53)

Differentiating Eq. (50) with respect to x and using the fact that x = f ′(v) and

v = −J ′(x) leads to

v +B = Af ′(v)−
1

γ +Kf ′(v)
β−1

γ + Lf ′(v)
δ−1

γ . (54)

Then, when v is large, the margin constraint is irrelevant: asymptotically, the solution

f ′(v) must be the same as in the unconstrained case, so f ′(v)−
1

γ ∼
∞
A−1v. Since δ−1 < 0,

we must have L = 0. Finally, K must be positive, otherwise for all v in the nonbinding

region we have f ′(v) < f ′
0(v), where f0 is the unconstrained, reduced, value function.

Integrating this relationship from v to M > v, we find that

f0(v) < f(v) + f0(M)− f(M). (55)

Since in the limit when wealth goes to infinity, constrained and unconstrained value

functions coincide, for any given v the previous relationship implies that f0(v) < f(v),

which is impossible.

Binding region. We now assume that y ≤ y∗B. The Lagrangian for the maximization

problem is

L = ω⊺(η + yσΣ)−
1

2
yω⊺σσ⊺ω − ψ(ω⊺λ− 1), (56)

where ψ ≥ 0 is the Lagrange multiplier associated with the constraint. Let ψK(λ, y)

denote the value of the Lagrange multiplier ψ when only the first K assets are held in

the portfolio for some level of risk aversion y and vector of margin coefficients λ ∈ Λ.

The first order condition leads to

ω∗ =
(σσ⊺)−1

y
(η + yσΣ− ψN (λ

∗
B, y)λ

∗
B). (57)

Since the margin constraint is binding, (λ∗B)
⊺ω∗ = 1, we obtain that

ψN (λ
∗
B, y) =

(λ∗B)
⊺(σσ⊺)−1η − (1− (λ∗B)

⊺(σσ⊺)−1σΣ)y

(λ∗B)
⊺(σσ⊺)−1λ∗B

. (58)
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This derivation is valid as long as for all i = 1, . . . , N , ω∗
i /λ

∗
B,i ≥ 0. At y = y∗B, ψN = 0,

exactly one constraint is binding and all asset allocations are different from zero until

y becomes too small. More precisely, from Eqs. (57) and (58), it is easy to verify that

z∗i = 0 exactly when y = yi,N with

yi,N =

(
λ∗B −

(λ∗

B)⊺(σσ⊺)−1λ∗

B

e⊺i (σσ
⊺)−1λ∗

B

ei

)
⊺

(σσ⊺)−1η

1−
(
λ∗B −

(λ∗

B)⊺(σσ⊺)−1λ∗

B

e⊺i (σσ
⊺)−1λ∗

B

ei

)⊤
(σσ⊺)−1σΣ

. (59)

We can assume that yN,N = max
i=1,..,N

{yi,N} and yN,N > 0. When y = yN,N , z
∗
N = 0 and a

second linear constraint becomes binding. Hence, we can conclude that for yN,N < y <

y∗B, the margin constraint is binding and all assets are optimally held in the portfolio.

For y slightly below yN,N , at least two linear constraints are binding and allocation

in asset N must be zero for y on some interval [yN,N − ε, yN,N ] for some ε > 0. To

see this, we proceed by contradiction and assume that the position of asset N changes

sign at y = yN,N . We denote λ
∗

B the vector of margin coefficients that has the same

components as vector λ∗B, except the last one. Since Λ is a discrete set, at y = yN,N we

must have ψN (λ
∗
B, yN,N) 6= ψN (λ

∗

B, yN,N), which is impossible by the continuity of the

solution in the lifetime relative risk aversion y. As mentioned earlier, the vectors λ of

these two linear constraints have their N−1 first components in common and only their

last components differ. It follows that as risk aversion y decreases, the optimization

problem is identical to program defined in Eq. (36) but possibly of smaller dimension

(not holding some assets may be optimal) and for a different vector of margin coefficients

λ ∈ Λ. Next, Lemma E.1 characterizes the optimal asset allocation when it is optimal

only hold K assets in the portfolio. To simply the exposition, we assume, without loss

of generality, that the first K assets are held in the portfolio while keeping in mind that

several different K asset configurations can take place as y decreases. Finally, it should

be clear from the previous N asset analysis that in general (except for a parameter

degeneracy), it is optimal to hold K assets as long as y belongs to a nonempty interior

interval.
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Lemma E.1. Assume that for y in
[
y−N,K, y

+
N,K

]
with 0 < y−N,K < y+N,K ≤ y∗B, the first

K assets are optimally held in nonzero positions. Then, for all y ∈
[
y−N,K, y

+
N,K

]
, there

is a vector λ ∈ Λ such that the optimal asset allocation is given by

IKω
∗ =

I⊤K(IKσσ
⊺I⊤K)

−1IK (η − ψK(λ, y)λ)

y
, (60)

and satisfies that

(i) for all i ∈ {1, . . . , K}, ω∗
i /λi ≥ 0

(ii) the Lagrange multiplier ψK associated with the optimization problem is positive and

given by

ψK(λ, y) =
(IKλ)

⊺(IKσσ
⊺I⊤K)

−1IKη −
(
1− (IKλ)

⊺(IKσσ
⊺I⊤K)

−1IKσΣ
)
y

(IKλ)⊺(IKσσ⊺I⊤K)
−1IKλ

. (61)

(iii) Risky asset allocations are given by

IKω
∗ =

(IKσσ
⊺I⊺K)

−1IKη

y
+

(
MK −

LK

y

)
(IKσσ

⊺I⊺K)
−1IKλ, (62)

with

LK =
(IKλ)

⊺(IKσσ
⊺I⊺K)

−1IKη

(IKλ)⊺(IKσσ⊺I⊺K)
−1IKλ

MK =
1

(IKλ)⊺(IKσσ⊺I⊺K)
−1IKλ

.

(63)

For y in
[
y−N,K , y

+
N,K

]
, no other asset configuration of dimension larger than K satisfies

all the aforementioned properties.

Proof of Lemma E.1: By assumption for all λ ∈ Λ, (1−λ⊺I⊤K(IKσσ
⊺I⊤K)

−1IKσΣ) >

0, so as y decreases, ψK remains positive. Consider the optimization problem PN,J when

investors face a margin constraint, N assets are available but the last N − J assets

must be held in zero positions. Clearly, program PN,J is more stringent than program

PN,J+1, and for (y, λ) ∈ R+ × Λ given, the optimal solution of problem PN,J is an

admissible (not necessarily optimal) allocation for problem PN,J+1. Then, assume that

for (y, λ) ∈ R+ × Λ, there is a solution to program PN,J+1 that is given by Eq. (60)

where the Lagrange multiplier is given by Eq. (61) for K = J +1. Given what precedes,

it cannot be the case that the optimal solution to program PN,J+1 and, a fortiori the
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optimal solution to program PN,N , is given by Eq. (60) for K = J unless asset K + 1 is

held in a zero position. Whenever the asset position is given by Eq. (60), the investor is

better off holding more rather than less assets.

Margin constraint binding for all y ≤ y∗B. The result follows from the fact that,

if K ≤ N assets are optimally held in the portfolio as lifetime relative risk aversion y

decreases, then Lagrange multiplier ψK given by Eq. (61) remains positive and therefore

the constraint must be binding. This implies that once the constraint starts binding at

y = y∗B, it remains binding for all y ≤ y∗B.

A given optimal asset position may only be found as long as y belongs to

a single interval. Assume that for y in
[
y−N,K , y

+
N,K

]
with 0 < y−N,K < y+N,K ≤ y∗B, it is

optimal to hold only K assets (without loss of generality the first K assets) in nonzero

positions with vector of margin coefficient I⊺Kλ and assume that y+N,K is the largest value

of y such that it is optimal to hold the (specific) asset combination. Lagrange multiplier

ψK(λ, y) given by Eq. (61) is a linear function that decreases with the second argument

y, which implies that the components of the vector yIKω
∗ is also a linear function of y,

where IKω
∗ is given by Eq. (60). Next, note that the components of vector IKω

∗ has a

constant sign (the same sign as the component of vector IKλ) on an interval. It remains

to show that it is not possible to reintegrate some assets while keeping the first K assets

and then dropping back the reintegrated assets to again hold only the first K assets.

Since the constraint is binding, if asset K + 1 were to be reintegrated into the portfolio

at y = y−N,K , the K + 1 asset’s position as a function of y for y slightly below y−N,K can

be written as

ω∗
K+1 =

AK+1 − BK+1y

y
, (64)

with BK+1 > 0 (< 0) if the corresponding margin coefficient λK+1 is equal to λ
+(−λ−),

the first K components of vector λ being the same as when y is in
[
y−N,K , y

+
N,K

]
. If

BK+1 > 0 (< 0), then for all values of y < y−N,K , z
∗
K+1 > 0(< 0), which implies that asset

K + 1 should not be dropped out of the portfolio without first dropping (at least) one

of the first K assets held in the portfolio. It follows that a specific asset configuration

can only hold for y within a single interval.

Asset reintegration condition. Assume that at y = y+N,J ≤ y∗B, it is optimal to

hold only (the first) J assets for some vector of margin coefficient λ ∈ Λ. By Lemma E.1,

14



it is optimal to reintegrate asset J + 1 into the portfolio at some lower level y−N,J < y+N,J

if and only e⊺J+1ω
∗ 6= 0 at all y = y−N,J − ε, with ε > 0 small, where allocation ω∗ is given

by Eq. (60) for K = J + 1. This leads to the condition ψJ+1(λ, y
−
N,J) = ψJ(λ, y

−
N,J).

No asset reintegrated once asset with largest leveraged expected return

held alone. Observe that for y > 0 small enough, assuming η 6= 0, the obvious optimal

solution to the program defined by Eq. (36) is ω∗ = (0, . . . , ω∗
i , . . . , 0), with ω

∗
i = 1/λi,

where asset i is such that ηi/λi = max
k=1,..,N

ηk/λk for some λ ∈ Λ. Hence, for y small

enough, only one asset is held in the portfolio. Next, observe that the program defined

by Eq. (36) is equivalent to the following program

max
ω∈Q

ω⊤(
η

y
+ σΣ)−

1

2
ω⊤σσ⊤ω, (65)

where ω = z
W
. Without loss of generality, assume that at y = y∗1 the solution of the

optimization problem defined in Eq. (65) is ω∗
1 = 1

λ1
with λ1 ∈ {−λ−, λ+}, and ω∗

k = 0

for k = 2, . . . , N. We want to show that this is also the optimal solution for all y < y∗1.

The key is to observe that y < y∗1

max
ω∈Q

ω⊤(
η

y
+σΣ)−

1

2
ω⊤σσ⊤ω ≤ max

ω∈Q

[
ω⊤(

η

y∗1
+ σΣ)−

1

2
ω⊤σσ⊤ω

]
+ max

ω∈Q
ω⊤(

η

y
−
η

y∗1
).

(66)

By assumption, the optimal solution to the optimization problem

max
ω∈Q

[
ω⊤(

η

y∗1
+ σΣ)−

1

2
ω⊤σσ⊤ω

]
, (67)

is ( 1
λ1
, 0, . . . , 0) and it turns out that for y < y∗1 the optimal solution to the optimization

problem

max
ω∈Q

ω⊤(
η

y
−

η

y∗1
), (68)

is also ( 1
λ1
, 0, . . . , 0). The result follows.
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Reduced HJB equation (first K assets held). Using the expressions for ω∗

derived in Lemma E.1, we obtain the following reduced HJB equation

(
θ + (γ − 1)(m− γ

Σ⊺Σ+Θ⊺Θ

2
)

)
f(v) =

γ

1− γ
(f ′(v))

γ−1

γ + f ′(v)

+ (B−1
K + γ(Σ⊺Σ +Θ⊺Θ)− γ(IKΣ)

⊺IKΣ+ LK)vf
′(v)

+
1

2

(
Σ⊺Σ+Θ⊺Θ+M2

K(IKλ)
⊺(IKσσ

⊺I⊺K)
−1IKλ

−2MK(IKλ)
⊺(IKσσ

⊺I⊺K)
−1IKσΣ

)
v2f ′′(v)

−
1

2

(
(IKη)

⊺(IKσσ
⊺I⊺K)

−1IKη − L2
K(IKλ)

⊺(IKσσ
⊺I⊺K)

−1IKλ
) (f ′(v))2

f ′′(v)

(69)

Note that the coefficient of the term (f ′(v))2 /f ′′(v) is negative if K > 1 by the Cauchy-

Schwarz inequality, and equal to zero for K = 1; the coefficient of the term v2f ′′(v) is

equal to

Σ⊺Σ+Θ⊺Θ− (IKΣ)
⊺IKΣ+ (MK(IKσI

⊺

K)
−1IKλ+ IKσΣ)

⊺(MK(IKσI
⊺

K)
−1IKλ+ IKσΣ),

(70)

which is positive.

Deterministic income and general preferences.

The Hamilton-Jacobi-Bellman equation for the primal value function F is

θF = max
z
W

∈Q
ũ(F1) + (rW + Y )F1 +mY F2 + z⊺(µ− r1)F1 +

1
2
z⊺σσ⊺zW 2F11, (71)

where ũ is the convex conjugate of u. This maximization problem is the same as the one

solved for the CRRA preferences case so all the results found in the CRRA preference

case apply. Furthermore, note that since Σ = 0, margin coefficient λ∗B,i must have the

same sign as e⊺i (σσ
⊺)−1(µ− r1).
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Appendix F. Proof of Proposition 6

When N = 2 and Σ = 0, the program defined by Eq. (36) becomes

max
ω∈Q

ω⊤(µ− r1)−
y

2
ω⊤σσ⊤ω − ψ2(ω

⊤λ− 1), (72)

where λ ∈ Λ and ψ2 ≥ 0 is the Lagrange multiplier. The first order condition is

z∗

W
=

(σσ⊤)−1

y
(µ− r1− ψ2λ), (73)

and

ψ2 =
λ⊤(σσ⊺)−1(µ− r1)− y

λ⊤(σσ⊺)−1λ
. (74)

The constraint starts binding at

y = y∗B = max
λ∈Λ

λ⊤(σσ⊤)−1(µ− r1), (75)

so that

λ∗B = argmax
λ∈Λ

λ⊤(σσ⊤)−1(µ− r1). (76)

The covariance matrix is

σσ⊤ =

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
, (77)

so that

(σσ⊤)−1 =
1

σ2
1σ

2
2(1− ρ2)

[
σ2
2 −ρσ1σ2

−ρσ1σ2 σ2
1

]
. (78)

For y ≥ y∗B

z∗1
W

=
1

y(1− ρ2)σ2
1σ

2
2

[
σ2
2(µ1 − r)− ρσ1σ2(µ2 − r)

]

z∗2
W

=
1

y(1− ρ2)σ2
1σ

2
2

[
σ2
1(µ2 − r)− ρσ1σ2(µ1 − r)

]
,

(79)
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For y ≤ y∗B

z∗1
W

=
1

λ1

[(
σ1

λ1

)2
+
(

σ2

λ2

)2
− 2ρσ1

λ1

σ2

λ2

]
[(

µ1 − r

λ1
−
µ2 − r

λ2

)
1

y
+

(
σ2
λ2

)2

− ρ
σ1
λ1

σ2
λ2

]

z∗2
W

=
1

λ2

[(
σ1

λ1

)2
+
(

σ2

λ2

)2
− 2ρσ1

λ1

σ2

λ2

]
[(

µ2 − r

λ2
−
µ1 − r

λ1

)
1

y
+

(
σ1
λ1

)2

− ρ
σ1
λ1

σ2
λ2

]
.

(80)

Let us assume that asset 1 is ultimately selected so that µ1−r
λ∗

1

> max
λ2∈{−λ−,λ+}

µ2−r
λ2

, for some

λ∗1 ∈ {−λ−, λ+} and set λ
∗

1 = λ+ if λ∗1 = −λ−, λ
∗

1 = −λ− if λ∗1 = λ+.

General properties. For y ≤ y∗B, asset allocations (z1, z2) are given by Eq. (80)

provided that it is possible to find a pair (λ1, λ2) ∈ Λ such asset zi
λi

≥ 0, i = 1, 2,

otherwise, only one asset is held in the portfolio. Second, recall that if asset 1 is held

alone at y = y, then it is optimal to hold only asset 1 for all y ≤ y (Proposition 5).

Third, it is never optimal to hold only asset 1 in a position (say long) for y in some

interval and only asset 1 in the opposite position (say short) for y in some other interval.

Fourth, define the dropping (D) and reintegrating (R) asset cutoffs

yL2,D =




µ1−r
λ∗

1

− µ2−r
λ+

(
σ1

λ∗

1

)2
− ρσ1

λ∗

1

σ2

λ+




+

and yS2,D =




µ1−r
λ∗

1

+ µ2−r
λ−

(
σ1

λ∗

1

)2
+ ρσ1

λ∗

1

σ2

λ−




+

y∗1,R =




µ1−r
λ∗

1

− µ2−r
λ2

−
(

σ2

λ2

)2
+ ρσ1

λ∗

1

σ2

λ2




+

and y∗1,D =




µ1−r

λ
∗

1

− µ2−r
λ2

−
(

σ2

λ2

)2
+ ρσ1

λ
∗

1

σ2

λ2




+

,

(81)

and y∗2,D = min∗{yL2,D, y
S
2,D}. The value of λ2 cannot change and is determined by the

sign of asset 2 position at y = y∗B using Eq. (79). Given what precedes, by inspection, it

is easy to check that the maximum number of regions that can be encountered is equal

to five, namely 0 < y∗2,D < y∗1,R < y∗1,D < y∗B. The special case y∗1,R = y∗1,D occurs if and

only if SP1
= ρSP2

, where SP1
, SP2

are the Sharpe ratios of assets 1, 2 respectively. By

inspection of Eq. (79) it must be the case that y∗1,R = y∗1,D = y∗B = µ2−r
λ2σ2

2

. On
[
0, y∗2,D

]

asset 1 is held alone and on
[
y∗2,D, y

∗
B

]
both assets are held in the portfolio with the

same sign. Thus, it is not possible to have four regions. Alternatively, we may have
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only three regions 0 < y∗2,D < y∗B. Finally, the special case y∗2,D = y∗B occurs if and only

if SP2
= ρSP1

and there are only two regions.

To illustrate the three possible dynamics of the portfolio concentration once the

margin constraint is binding, y ≤ y∗B, we consider three parameter configurations below.

Five regions. We assume that 0 < µ2 − r < µ1 − r and µ1−r
σ1

< ρµ2−r
σ2

, which

implies that 0 < σ2 < ρσ1. Note that λ∗1 = λ+ and
(
λ∗B,1, λ

∗
B,2

)
= (−λ−, λ+) so

y∗B = (−λ−, λ+)⊤(σσ⊤)−1(µ− r1) > 0. (82)

In this case, λ
∗

1 = −λ− and we have

y∗1,D =
µ1−r
λ− + µ2−r

λ+(
σ2

λ+

)2
+ ρ σ1

λ−

σ2

λ+

, y∗1,R =

µ1−r

λ+
−

µ2−r

λ+

−
(
σ2

λ+

)2
+ ρ σ1

λ+

σ2

λ+

, y∗2,D =

µ1−r

λ+
−

µ2−r

λ+

(
σ1

λ+

)2
− ρ σ1

λ+

σ2

λ+

. (83)

and one can check that indeed, 0 < y∗2,D < y∗1,R < y∗1,D < y∗B.

On
[
y∗1,D, y

∗
B

]
asset 1 is held (short) and asset 2 is held (long)

z∗1
W

=
1

λ−
[(

σ1

λ−

)2
+
(
σ2

λ+

)2
+ 2ρ σ1

λ−

σ2

λ+

]
[(

−
µ1 − r

λ−
−
µ2 − r

λ+

)
1

y
+
( σ2
λ+

)2
+ ρ

σ1
λ−

σ2
λ+

]
< 0

z∗2
W

=
1

λ−
[(

σ1

λ−

)2
+
(
σ2

λ+

)2
+ 2ρ σ1

λ−

σ2

λ+

]
[(

µ2 − r

λ+
+
µ1 − r

λ−

)
1

y
+
( σ1
λ−

)2
+ ρ

σ1
λ−

σ2
λ+

]
> 0,

(84)

on
[
y∗1,R, y

∗
1,D

]
only asset 2 is held (long)

z∗1
W

= 0

z∗2
W

=
1

λ+
,

(85)

on
[
y∗2,D, y

∗
1,R

]
asset 1 is held (long) and asset 2 is held (long)

z∗1
W

=
1

σ2
1 + σ2

2 − 2ρσ1σ2

[
µ1 − µ2

y
+
σ2
λ+

(σ2 − ρσ1)

]
> 0

z∗2
W

=
1

σ2
1 + σ2

2 − 2ρσ1σ2

[
µ2 − µ1

y
+
σ1
λ+

(σ1 − ρσ2) y

]
> 0,

(86)
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and finally on
[
0, y∗2,D

]
only asset 1 is held (long)

z∗1
W

=
1

λ+

z∗2
W

= 0.

(87)

Three regions. We assume that 0 < µ2 − r < µ1 − r, µ2−r
σ2

> ρµ1−r
σ1

, which implies

0 < ρσ2 < σ1. We have λ∗1 = λ+, λ∗B,1 = λ∗B,2 = λ+ and

y∗B = (λ+, λ+)⊤(σσ⊤)−1(µ− r1) > 0. (88)

Margin coefficient λ
∗

1 is irrelevant. We have 0 < y∗2,D < y∗B with

y∗2,D =
µ1 − µ2

σ1

λ+ (σ1 − ρσ2)
. (89)

On
[
y∗2,D, y

∗
B

]
asset 1 is held (long) and asset 2 is held (long)

z∗1
W

=
1

σ2
1 + σ2

2 − 2ρσ1σ2

[
µ1 − µ2

y
+
σ2
λ+

(σ2 − ρσ1)

]
> 0

z∗2
W

=
1

σ2
1 + σ2

2 − 2ρσ1σ2

[
µ2 − µ1

y
+
σ1
λ+

(σ1 − ρσ2)

]
> 0,

(90)

and on
[
0, y∗2,D

]
only asset 1 is held (long)

z∗1
W

=
1

λ+

z∗2
W

= 0.

(91)

Two regions. We assume that 0 < µ2 − r < µ1 − r, µ2−r
σ2

= ρµ1−r
σ1

. We have λ∗1 = λ+.

It follows that

y∗2,D = y∗B = λ+
µ1 − r

σ2
1

> 0. (92)

Only asset 1 is held (long)

z∗1
W

=
1

max{y, y∗B}

µ1 − r

σ2
1

> 0

z∗2
W

= 0.

(93)
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Appendix G. Proof of Proposition 7

We assume that for (i, j) = {1, . . . , K}2,

ηi
λ∗i

=
ηj
λ∗j

> 0, (94)

Assume that, for y ∈
[
y−N,K , y

+
N,K

]
, it is optimal to hold the first K assets in such a way

that the condition in Eq. (94) is satisfied for k = 1, . . . , K. The Lagrange multiplier

given by Eq. (61) can be written as

ψK(y, λ
∗) =

η1
λ∗1

−
1− (λ∗)⊤I⊤K(IKσσ

⊺I⊤K)
−1IKσΣ

(λ∗)⊤I⊤K(IKσσ
⊺I⊤K)

−1IKλ∗
y, (95)

which leads to the following optimal portfolio allocation

IKω
∗ = (IKσσ

⊺I⊤K)
−1

(
σΣ+

1− (λ∗)⊤I⊤K(IKσσ
⊺I⊤K)

−1IKσΣ

(λ∗)⊤I⊤K(IKσσ
⊺I⊤K)

−1IKλ∗
λ∗
)
. (96)

Asset allocations are independent of assets’ excess return η as well as the lifetime risk

aversion y.

Remark. If we assume that
e⊤i σΣ

λ∗

i
=

e⊤j σΣ

λ∗

j
for (i, j) in {1, . . . , K}2 we obtain that

IKω
∗ =

(IKσσ
⊺I⊤K)

−1λ∗

(λ∗)⊤I⊤K(IKσσ
⊺I⊤K)

−1IKλ∗
, (97)

which is only depends on the covariance matrix and the margin coefficients of the first

K assets.

We now show that if all assets have the same leveraged expected excess return, i.e.

the condition in Eq. (94) holds for K = N , then if at y ∈
[
y−N,K, y

+
N,K

]
exactly K assets

are held in the portfolio, then the same K assets will be held in the same position for

all y ≤ y−N,K .

Step 1: We know that for y ≤ y∗B, the margin constraint is binding. For y = 0

the investor is indifferent between assets, therefore threshold yK is well defined for some

K ∈ {1, . . . , N}.
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Step 2: If no security among the K assets held is first dropped out of the portfolio,

reintegrating asset i ∈ {K +1, . . . , N} into the portfolio is not optimal otherwise for all

ε > 0 small enough, at y = y−N,K + ε (respectively y = y−N,K − ε), the fraction of wealth

invested in each asset is given by Eq. (96) for asset K (respectively asset K+1). Observe

that these expressions are independent of risk aversion y, so as ε goes to 0 there will be

a jump in asset allocations at y = y−N,K , which is impossible because of the continuity of

the solution in parameter y.

Step 3: From Eq. (96), the expression for the asset allocation is, by assumption,

optimal for values of the lifetime relative risk aversion y in
[
y−N,K , y

+
N,K

]
and admissible

for all y below y+N,K. From step 2, to reintegrate asset K + 1, one asset among the K

assets held must first be dropped, which cannot be optimal, since, from Lemma E.1,

should it be possible to hold K assets whose positions are given by Eq. (96), holding

only K − 1 assets will be a dominated investment strategy.

Appendix H. Dual Approach: Fictitious Financial

Market

Let a, b and κ be, respectively, an 1 × 1, an N × 1 and an M × 1 adapted stochas-

tic processes to filtration F and consider the following fictitious financial market that

consists of:

- a riskless bond B̂ with dynamics given by

dB̂t = (r + a)B̂tdt, (98)

- N risky, nondividend paying securities whose prices evolve according to:

dŜt = IŜt
(µ+ b)dt + IŜt

σdwt, (99)

- M additional, nondividend paying securities whose prices evolve according to:

dP̂t = IP̂t
µ̂dt + IP̂t

σ̂dwY
t , (100)
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where µ̂ and σ̂ are respectively anM ×1 andM ×M adapted stochastic processes

to filtration F, such that κ = −σ̂−1(µ̂− r1).

Dual formulation

A state price density πa,b,κ is an adapted stochastic process to filtration F defined by

πa,b,κ
0 = 1 and

dπa,b,κ
t = πa,b,κ

t

(
−(r + at)dt−

(
σ−1

(
bt − at1 + µ− r1

))
⊺

dwt + κ⊺t dw
Y
t

)
, (101)

where a, b and κ are, respectively, an 1× 1, an N × 1 and an M × 1 adapted stochastic

process to filtration F.

Effective domain

For (a, b, κ) ∈ R× R
N × R

M , let

e(a, b, κ) = sup
z

z+x
∈Q

− ax− b⊺z. (102)

The effective domain N is defined by

N =
{
(a, b, κ) ∈ R× R

N × R
M , e(a, b, κ) <∞

}
. (103)

Lemma H.1. Under the margin constraint, Eq. (4) of the paper, the effective domain

is given by

N = {(a, b, κ) ∈ R+ × R
N
+ × R

M , κ+a ≤ bi ≤ κ−a, i = 1, . . . , N}, (104)

and e(a, b, κ) ≡ 0, for all (a, b, κ) ∈ N .

Proof of Lemma H.1. The relationship e(a, b, κ) ≡ 0 comes from the fact that Q

is a cone. Then, it is easy to see that we must have a ≥ 0, bi ≥ 0, i = 1, . . . , N . If

zi ≥ 0, i = 1, . . . , N we have

− ax− b⊺z = −a

(
x+ (1− λ+)

N∑

i=1

zi

)
−

N∑

i=1

(bi − (1− λ+)a)zi. (105)
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Since zi ≥ 0, i = 1, . . . , N we must have bi − (1 − λ+)a ≥ 0, i = 1, . . . , N . Similarly,

when zi ≤ 0, i = 1, . . . , N , we have

− ax− b⊺z = −a

(
x+ (1 + λ−)

N∑

i=1

zi

)
−

N∑

i=1

(bi − (1 + λ−)a)zi. (106)

Since zi ≤ 0, i = 1, . . . , N , we must have bi − (1 + λ−)a ≤ 0, i = 1, . . . , N . Since

λ+ = κ+ + 1 and λ− = κ− − 1, the result follows.

Following the derivation in Cuoco (1997), for some suitable price density π∗ =

πa∗,b∗,κ∗

, the optimization problem, given in Eq. (9) of the paper, is equivalent to

F (W0, Y0) = max
c

E0

[∫ ∞

0

u(cs)e
−θsds

]

such that E0

[∫ ∞

0

π∗
scsds

]
= W0 + E0

[∫ ∞

0

π∗
sYsds

]
,

(107)

with W0 > 0 and Y0 > 0 given.

Appendix I. Dual Approach

To ensure that the optimization problem, given by Eqs. (9) of the paper, and (107)

are equivalent, it is enough to determine the saddle point (c∗, φ∗, (a∗, b∗, κ∗)) of the

functional

L(c, ψ, (a, b, κ)) = E0

[∫ ∞

0

u(cs)e
−θsds

]
−φ

(
E0

[∫ ∞

0

πa,b,κ
s (cs − Ys)ds

]
−W0

)
. (108)

The maximization over c yields u′(c∗s)e
−θs = φπa,b,κ

s and the Lagrange multiplier φ∗ is

determined by the budget constraint

E0

[∫ ∞

0

πa,b,κ
s (I(φ∗πa,b,κ

s eθs)− Ys)ds

]
=W0, (109)

where I is the inverse of the marginal utility function. We define the process Xa,b,κ:

Xa,b,κ
t = φ∗πa,b,κ

t eθt. (110)
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The dual value function J is given by

J(X0, Y0) = min
(a,b,κ)∈N

E0

[∫ ∞

0

(
ũ(Xa,b,κ

s ) +Xa,b,κ
s Ys

)
e−θsds

]
, (111)

where ũ(X) = max
c≥0

u(c)− Xc is the convex conjugate of u. The solution of this mini-

mization problem (a∗, b∗, κ∗) allows us to recover the state price density π∗ = πa∗,b∗,κ∗

.

For CRRA preferences, the convex conjugate is given by

ũ(X) =





γX
γ−1
γ

1−γ
, γ 6= 1,

− lnX − 1 , γ = 1.
(112)

Properties of the dual value function

Primal variables (F,W ) and dual variables (J,X) are linked by the following Legen-

dre transformation

W = −J1(X, Y ) and X = F1(W,Y ). (113)

As explained in He and Pagès (1993), J is nonincreasing and strictly convex in X . It is

also easy to check that J is nondecreasing and concave in Y. For the case of a CRRA

investor, the dual value function J can be written as J(X, Y ) = X
γ−1

γ h(X
1

γ Y ), for some

smooth function h. For convenience, let us write N = Na,b × R
M . The dual value

function J satisfies the following Hamilton-Jacobi-Bellman equation:

θJ =
γX

γ−1

γ

1− γ
+XY + (θ − r)XJ1 +mY J2 +

Σ⊺Σ +Θ⊺Θ

2
Y 2J22 −

Σ⊺Σ

2

J2
12

J11

+ min
κ∈RM

{
κ⊺κ

2
X2J11 + κ⊺ΘXY J12

}

+ min
(a,b)∈Na,b

{
−aXJ1 +

X2

2

(
b+ µ− (r + a)1−

σΣY J12
XJ11

)
⊺

(σσ⊺)−1

(
b+ µ− (r + a)1−

σΣY J12
XJ11

)
J11

}

(114)
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We obtain that κ∗ = −ΘXY J12
X2J11

, which leads to

θJ =
γX

γ−1

γ

1− γ
+XY + (θ − r)XJ1 +mY J2 +

Σ⊺Σ +Θ⊺Θ

2
Y 2

(
J22 −

J2
12

J11

)

+ min
(a,b)∈Na,b

{
−aXJ1 +

X2

2

(
b+ µ− (r + a)1−

σΣY J12
XJ11

)
⊺

(σσ⊺)−1

(
b+ µ− (r + a)1−

σΣY J12
XJ11

)
J11

}

(115)

Using the fact that γXJ11 = −J1+Y J12 and−XJ11/J1 = 1/y, the minimization problem

is equivalent to

min
(a,b)∈Na,b

a+
1

2y

(
η + yσΣ+ b− a1

)
⊺

(σσ⊺)−1
(
η + yσΣ+ b− a1

)
. (116)

The minimization problem given by Eq. (116) and the maximization problem, given

by Eq. (16) of the paper, are dual programs of one another: the solution a∗ of the

dual problem is equal to the Lagrange multiplier ψ of the primal problem. Within the

nonbinding region, we find that b∗i = a∗ = 0. When K assets are optimally held —

without loss of generality we can always assume the first K assets — the solution of

program given by Eq. (116) is

a∗ = ψK =
(IKλ)

⊺(IKσσ
⊺I⊺K)

−1IKη − (1− (IKλ)
⊺(IKσσ

⊺I⊺K)
−1IKσΣ)y

(IKλ)⊺(IKσσI
⊺

K)
−1IKλ

b∗k = (1− λk)a
∗, k = 1, . . . , K,

(117)

for some λ ∈ Λ, and the fraction of wealth invested in risky assets z∗/W is given by

IK
z∗

W
=

(IKσσ
⊺I⊺K)

−1

y
IK(η − yσΣ+ b∗ − a∗1). (118)

The last N −K constraints of set Na,b are non binding and the last N −K components

of vector b∗ are such that z∗k = 0, for k = K + 1, K + 2, . . . , N .

Remark. Observe that the right hand side of Eq. (107) represents the lifetime re-

sources of the investor. Even though an individual is not allowed to pledge his future

labor income in any investment strategy and can only use his financial wealth W0, his

lifetime resources may by far exceed W0. The margin requirement imposes a limit on
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the investor’s maximum exposure to risky assets. When the margin requirement binds,

the investor becomes fairly risk tolerant, which leads him to sacrifice diversification and

load up his portfolio with assets that deliver a high expected return.

Remark. For the particular case of deterministic income and independent returns, the

investor’s choice can be thought of in terms of an adjusted Sharpe ratio for asset k, ŜP,k,

defined by

ŜP,k =
µk + b∗k − (r + a∗)

σk
. (119)

Inside the nonbinding region, for every asset k, the adjusted Sharpe ratio ŜP,k and the

true Sharpe ratio SP,k = (µk − r)/σk coincide since, when the constraint is not binding,

b∗k = a∗ = 0. Inside the binding region with N assets, we have b∗k = (1 − λ∗B,k)a
∗, for

k = 1, . . . , N so indeed ∣∣∣ŜP,k

∣∣∣ < |SP,k| , (120)

since µk − r and λ∗B,k have the same sign. Asset k is dropped out of the portfolio as

soon as its adjusted Sharpe ratio ŜP,k becomes zero. Inside the binding region with only

K assets, as the margin constraint becomes more binding, the adjusted Sharpe ratio of

the remaining K risky assets shrinks, since a∗ rises when y decreases. This result is in

line with empirical findings by Ivković, Sialm, and Weisbenner (2008) who report that

concentrated portfolios have lower Sharpe ratios.

Appendix J. Proof of Proposition 8

We prove Proposition 8 first for several special cases when shorting is not allowed and

then for the general case. We also provide a complete characterization for the special

case when the returns of the risky assets are independent, shorting is not allowed, and

the margin requirement is the same for the market index fund and the market-weighted

portfolio of risky assets. In this special case, the market index fund is the first asset

dropped from the portfolio, irrespective of the characteristics of the risky assets. Both

before and after the market index fund drops from the investor’s portfolio, assets whose

beta is less than, or equal to, one and that have volatility larger than the volatility of

the market index fund, may remain in the investor’s portfolio.
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The maximization program is

max
(ω,ωM )∈RN+1

(ω, ωM)⊺(η + yσΣ, ηM + yπ⊺σΣ)−
y

2
(ω, ωM)⊺V (ω, ωM)

s.t. (ω+)⊺λ+ + (ω−)⊺λ− + λ+Mω
+
M + λ−Mω

−
M ≤ 1,

(121)

where (λ+)⊺ = (λ+1 , λ
+
2 , . . . , λ

+
N)

⊺ and (λ−)⊺ = (λ−1 , λ
−
2 , . . . , λ

−
N)

⊺.

First, note that since the objective function is continuous and the set over which

the maximum is sought, {(ω, ωM) ∈ R
N+1, (ω+)⊺λ+ + (ω−)⊺λ− + λ+Mω

+
M + λ−Mω

−
M ≤ 1}

is compact, the maximum is achieved and at least one solution exists. The constraint

(ω+)⊺λ+ +(ω−)⊺λ−+ λ+Mω
+
M +λ−Mω

−
M ≤ 1 can be rewritten as: λ⊺ω+ λMωM ≤ 1, where

λ⊺ = (λ1, λ2, . . . , λN)
⊺, and λk ∈ {−λ−k , λ

+
k }, and ωk/λk ≥ 0 for all k ∈ {1, . . . , N}.

The Lagrangian of the maximization problem is

L =(ω, ωM)⊺(η + yσΣ, ηM + yπ⊺σΣ)−
y

2
(ω, ωM)⊺V (ω, ωM)

− ψ [(ω, ωM)⊺(λ, λM)− 1)] + (
ω

λ
,
ωM

λM
)⊺(ϕ, ϕM),

(122)

which leads to the following optimal condition

(η + yσΣ, ηM + yπ⊺σΣ)− yV (ω∗, ω∗
M)− ψ(λ, λM) + (

ϕ

λ
,
ϕM

λM
) = 0, (123)

where ψ ≥ 0, with ψ [(ω∗, ω∗
M)⊺(λ, λM)− 1)] = 0 and (ϕ/λ, ϕM/λM) ∈ R

N
+ × R+, such

that ϕkω
∗
k/λk = 0 and ϕMω

∗
M/λM = 0, for k = 1, . . . , N. We note that, by convention,

if (x, y) ∈ R
N × R

N , then z⊺ =
(

x
y

)
⊺

=
(

x1

y1
, x2

y2
, . . . , xN

yN

)
.

The optimal condition on the index fund holding is redundant. Since the system

admits a (non-unique) solution the Lagrange multipliers must satisfy

ψ(λM − π⊺λ)−
ϕM

λM
+ π⊺

ϕ

λ
= 0. (124)

Manipulating the N ×N system, we obtain that

ω∗ + ω∗
Mπ =

1

y
(σσ⊺)−1(η +

ϕ

λ
+ yσΣ− ψλ). (125)
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Observe that ω∗
k + ω∗

Mπk is the total exposure of the portfolio to asset k, either by

directly holding asset k with weight ω∗
k, and/or through the market index fund with

weight ω∗
Mπk.

We now investigate two special cases when short sales are prohibited.

Special Case 1: No Short Sales, Labor Income Uncorrelated with the Risky

Assets.

Our analysis is divided in two parts: when the margin requirement is not binding

and when the margin requirement is binding.

Part 1: Analysis when the margin requirement is not binding

First, observe that since π ∈ R
N
++, holding all the securities long for large values

of the lifetime relative risk aversion, y, is a feasible strategy. For y > y∗B, the margin

requirement is not binding and we have

ω∗ + ω∗
Mπ =

1

y
(σσ⊺)−1(µ− r1) =

̟π

y
∈ R

N
+ . (126)

Let (λ+)⊺ = (λ+1 , λ
+
2 , . . . , λ

+
N)

⊺ denote the vector of long margin coefficients for the

securities and λ+M the margin coefficient for the market index fund. In order to determine

the value of the binding threshold for the margin requirement, y∗B, we need to distinguish

several cases.

Special Case 1.1. Equal margin requirements: λ+M = π⊺λ+.

From Eq. (126), at y = y∗B we obtain that

1 =
(λ+)⊺(σσ⊺)−1(µ− r1)

y∗B
+ (λ+M − π⊺λ+)ω∗

M , (127)

so that

y∗B = (λ+)⊺(σσ⊺)−1(µ− r1). (128)

This is the same binding threshold as in the case when the market index fund is not

available.

Special Case 1.2. Margin requirement for market index fund greater than

weighted margin requirement for individual assets: λ+M > π⊺λ+.
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Again at y = y∗B, we have

1 =
(λ+)⊺(σσ⊺)−1(µ− r1)

y∗B
+ (λ+M − π⊺λ+)ω∗

M . (129)

Since the investor is always better off when the margin requirement is not binding,

the optimal strategy must be such that the margin requirement starts binding at the

lowest possible value of the lifetime relative risk aversion, y. As we assume λ+M > π⊺λ+,

choosing ω∗
M = 0 is optimal and

y∗B = (λ+)⊺(σσ⊺)−1(µ− r1). (130)

In this case the binding threshold is the same as in the case when the market index

fund is not available. In addition, the market index fund is not held when the margin

requirement starts binding.

Special Case 1.3. Margin requirement for market index fund smaller than

weighted margin requirement for individual assets: λ+M < π⊺λ+.

Again, it is optimal to choose ω∗
M is such a way that the margin requirement starts

binding for the smallest possible level of the lifetime relative risk aversion, y. As we

assume that λ+M < π⊺λ+, choosing ω∗
M as large as possible, while compatible with ω∗ +

ω∗
Mπ ∈ R

N
+ , is optimal. We can choose ω∗

M = 1/λ+M and therefore we must have ω∗ = 0.

It follows that

y∗B = λ+M1
⊺

(σσ⊺)−1(µ− r1) =
λ+M
̟

(131)

Observe that

y∗B < (λ+)⊺(σσ⊺)−1(µ− r1) (132)

as
λ+M
π⊺λ+

(λ+)⊺(σσ⊺)−1(µ− r1) = λ+M1
⊺

(σσ⊺)−1(µ− r1) (133)

and, by assumption
λ+M
π⊺λ+

< 1. (134)

This strategy is feasible since at y = y∗B, if ω
∗
M = 1

λ+

M

, from Eq. (126) we have

ω∗ =

(
1

y∗B
−

̟

λ+M

)
(σσ⊺)−1(µ− r1) = 0 ∈ R

N
+ . (135)
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Therefore, when the market index fund margin requirement is favorable compared to

the margin requirements of the individual assets, the portfolio margin requirement starts

binding at lower values of the lifetime relative risk aversion, y, and, at the value y∗B, when

the margin requirement starts binding, the investor only holds the market index fund in

his portfolio.

Part 2: Analysis when the margin requirement is binding

We first derive the following Lemma.

Lemma J.1. Choose K < N assets and let JK denote the K×N matrix whose first line

is equal to ek if asset k is among the K assets chosen and has the smallest index, second

line is equal ej if asset j is among the K assets chosen and has the second smallest index

and so on. Let VK be the covariance matrix formed by the set of the K chosen assets

and the market index fund which has rank K + 1 and is given by

VK =

[
JKσσ

⊺J⊺

K JKσσ
⊺π

π⊺σσ⊺J⊺

K π⊺(σσ⊺)π

]
. (136)

Then, we have that

V −1
K

[(
JK(µ− r1), µM − r

)]
= (0, 0, .., 0, ̟−1). (137)

Proof of Lemma J.1.

First, notice that

VK =

[
JKσσ

⊺J⊺

K ̟JK(µ− r1)

̟(µ− r1)⊺J⊺

K ̟2(µ− r1)⊺(σσ⊺)−1(µ− r1)

]
. (138)

Set

d = ̟2
[
(µ− r1)⊺(σσ⊺)−1(µ− r1)− (µ− r1)⊺J⊺

K (JKσσ
⊺J⊺

K)
−1
JK(µ− r1)

]
> 0.

(139)
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Inverting matrix VK , we obtain that V −1
K is equal to

[
(JKσσ

⊺J⊺

K)
−1
(
1 + ̟2

d
JK(µ− r1)(µ− r1)⊺J⊺

K (JKσσ
⊺J⊺

K)
−1
)

−̟
d
(JKσσ

⊺J⊺

K)
−1 JK(µ− r1)

−̟
d
(µ− r1)⊺J⊺

K (JKσσ
⊺J⊺

K)
−1 1

d

]
.

(140)

Let IK,K+1 be the K × (K +1) matrix that consists of the first K rows of the (K +1)×

(K + 1) identity matrix. It follows that

IK,K+1V
−1
K [(JK(µ− r1), µM − r)]

=
̟2

d

[
d

̟2
+ (µ− r1)⊺J⊺

K (JKσσ
⊺J⊺

K)
−1 JK(µ− r1)− (µ− r1)⊺(σσ⊺)−1(µ− r1)

]

× (JKσσ
⊺J⊺

K)
−1
JK(µ− r1)

= 0 (by definition of d in Eq. 139).

(141)

It remains to check that the claim is true for the last component. Using the fact that

µM − r = π⊺(µ− r1), we have that

e⊺K+1V
−1
K

[(
JK(µ− r1), µM − r

)]
=−

̟

d
(µ− r1)⊺J⊺

K (JKσσ
⊺J⊺

K)
−1 JK(µ− r1) +

1

d
π⊺(µ− r1)

=
̟

d

[
−(µ− r1)⊺J⊺

K (JKσσ
⊺J⊺

K)
−1 JK(µ− r1)

+(µ− r1)⊺(σσ⊺)−1(µ− r1)
]

=̟−1.

(142)

We now examine how asset selection takes place for values of the lifetime relative

risk aversion, y, slightly below the value y∗B, for which the margin requirement starts

binding.

Special Case 1.1: λ+M = π⊺λ+.

For y slightly below y∗B, we have

ω∗ + ω∗
Mπ =

(σσ⊺)−1
[
µ− r1− ψN (λ

+, y)λ+
]

y
, (143)
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where

ψN (λ
+, y) =

(λ+)⊺(σσ⊺)−1(µ− r1)− y

(λ+)⊺(σσ⊺)−1λ+
> 0 (144)

is decreasing in the lifetime relative risk aversion, y. As y decreases, eventually it reaches

a threshold where exactly one component of vector ω∗ + ω∗
Mπ is equal to zero. Without

loss of generality, we can assume that when y = y∗N,D, then we have ω∗
N + ω∗

MπN = 0.

Since by assumption πN > 0, we must have ω∗
M = 0, i.e., the investor optimally chooses

not to hold the market index fund as soon as dropping the first asset is optimal.

Special Case 1.2: λ+M > π⊺λ+.

For y slightly below y∗B, only the N securities are held in a non-zero position in the

portfolio. As argued above, it is never optimal to re-integrate the market index fund into

the portfolio, since, if it were optimal to re-integrate the market index fund, it would be

the next asset to be dropped as y decreases further, which leads to a contradiction.

Special Case 1.3: λ+M < π⊺λ+.

If
µM − r

λ+M
> max

k∈{1,...,N}

µk − r

λ+k
, (145)

then, for all y ≤ y∗B, the optimal portfolio is ω∗
M = 1/λ+M and ω∗ = 0, i.e., when the

leveraged expected excess return of the market index fund is greater than the leveraged

expected excess return of every risky asset, then, once the margin requirement binds,

the investor only holds the market index fund in his portfolio.

Next, assume that
µM − r

λ+M
< max

k∈{1,...,N}

µk − r

λ+k
. (146)

All assets cannot be re-integrated into the portfolio at y = y∗B − ε, ε > 0, otherwise

the condition ψ(λ+M − π⊺λ+)− ϕM

λ+

M

+ π⊺ ϕ
λ+ = 0 would be violated: at least one (possibly

more) asset is not re-integrated into the portfolio for y slightly below y∗B. For values

of the lifetime relative risk aversion, y, slightly below y∗B, by continuity of the optimal

solution in parameter y, the market index fund must be held and we assume that it is
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optimal to hold in non-zero positions K securities. The optimal asset allocation is given

by

(JKω
∗, ω∗

M) =
V −1
K

[
(JK(µ− r1), µM − r)− ψK+1(y)(JKλ

+, λ+M)
]

y

=
1

y

(
−ψK+1(y)IK,K+1V

−1
K (JKλ

+, λ+M), ̟−1 − ψK+1(y)e
⊺

K+1V
−1
K (JKλ

+, λ+M)
)
,

(147)

with

ψK+1(y) =
(JKλ

+, λ+M)⊺V −1
K (JK(µ− r1), µM − r)− y

(JKλ+, λ
+
M)⊺V −1

K (JKλ+, λ
+
M)

=
y∗B − y

(JKλ+, λ
+
M)⊺V −1

K (JKλ+, λ
+
M)
.

(148)

We note that since IK,K+1V
−1
K I⊺KJK(µ − r1) = 0, the set of K securities optimally held

must be such that −IK,K+1V
−1
K (JKλ

+, λ+M) ∈ R
K
++. Recall that the Lagrange multiplier

ψK+1 increases as the lifetime relative risk aversion, y, decreases. This implies that

allocations in the K securities must be increasing as y decreases whereas the position in

the market index fund is decreasing. We conclude that:

• The market index fund is the next asset to be dropped out of the portfolio at

threshold value y∗M,D such that ̟−1−ψK+1(y
∗
M,D)e

⊺

K+1V
−1
K (JKλ

+, λ+M) = 0, which

implies that

y∗M,D = −
(JKλ

+)⊺IK,K+1V
−1
K (JKλ

+, λ+M)

̟
> 0. (149)

• The market index fund is never re-integrated into the portfolio, since should this

happen, as the lifetime relative risk aversion, y, decreases further, the market index

fund will again be the first asset to be dropped out, which contradicts the fact that

a particular asset configuration can only occur once, when y belongs to a particular

interval.

Special Case 2: Independent Assets, µ − r1 > 0, No Short Sales, No Labor

Income Correlation and λ+M = π⊺λ+.
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We find that the level of the lifetime relative risk aversion for which the margin

requirement starts binding, y∗B, is given by

y∗B = (λ+)⊺(σσ⊺)−1(µ− r1), (150)

and for y > y∗B, the optimal allocation in asset k is such that

ω∗
k + ω∗

Mπk =
µk − r

yσ2
k

, (151)

with (ω∗
k, ω

∗
M) ∈ R

2
+. Note that since λM = π⊺λ+, we have that

(λ+)⊺ω∗ + λMω
∗
M = (λ+)⊺(ω∗ + ω∗

Mπ) (152)

is strictly below one for y > y∗B, and equal to one for y = y∗B. For y slightly below y∗B,

we have

ω∗
k + ω∗

Mπk =
1

yσ2
k

(µk − r − ψN (λ
+, y)λ+k ) (153)

and the Lagrange multiplier ψN (λ
+, y) is equal to (α⊺ξ−y)/α⊺1, where ξk = (µk−r)/λ

+
k

and αk =
(
λ+k /σk

)2
, k ∈ {1, . . . , N}. It is possible to rewrite the optimal aggregate asset

holding for security k as

ω∗
k + ω∗

Mπk =
αk

yλ+k α
⊺1

(y − α⊺(ξ − ξk1)). (154)

At y = y∗B, we must have ψN (λ
+, y∗B) = 0, which leads to

y∗B = α⊺ξ. (155)

Next, without loss of generality, assume that 0 < ξN < ξN−1 < · · · < ξ1. From Eq. (154),

since ξ ≥ 0 and α ≥ 0, it is easy to see that as the lifetime relative risk aversion, y,

decreases, asset allocation ω∗
N + ω∗

MπN is the first allocation to hit zero at

y∗N,D = α⊺(ξ − ξN1). (156)

Since (ω∗
N , ω

∗
M) ∈ R

2
+, πN > 0, it must be the case that at y = y∗N,D, we have ω∗

N =

ω∗
M = 0, i.e., the aggregate position in asset N , as well as the position in the market

index fund, are equal to zero.
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More generally, for K ∈ {1, . . . , N} define the cutoff where asset K is dropped from

the investor’s portfolio

y∗K,D = (IKα)
⊺
[
IK(ξ − ξK1)

]
, (157)

and by convention, set y∗N+1,D = y∗B; observe that 0 = y∗1,D < y∗2,D < · · · < y∗N+1,D. For

k = 1, . . . , N − 1, we have K ∈ {1, . . . , N} with

ω∗
k =

αk

yλ+k

[
y − y∗K,D

]+

(IKα)⊺1
. (158)

Thus, there are exactly N+1 regions: if K = 1, . . . , N−1, when the value of the lifetime

relative risk aversion, y, is such that y∗K,D < y ≤ y∗K+1,D, only the first K assets are held

in the portfolio, and the market index fund is not held. When y∗N,D < y ≤ y∗B, the

margin requirement is binding: all the N securities are held long in the portfolio and the

investor may have a long position in the market index fund. Finally, when y > y∗B, the

margin requirement is not binding: all the N securities are held long in the portfolio and

the investor may have a long position in the market index fund. Observe that, given our

assumptions, asset N−1 in general may have a beta below one and/or a larger volatility

than the market index fund and still, for all values of the lifetime relative risk aversion,

y ∈
[
y∗N−1,D, y

∗
N,D

]
, the investor optimally chooses to hold asset N − 1 and to not hold

the market index fund.

General Case, No Labor Income Correlation, Σ = 0

As long as the margin requirement is not binding, the optimal allocations satisfy

ω∗ =

(
1

y
−̟ω∗

M

)
(σσ⊺)−1(µ− r1)

y
. (159)

As argued before, it is optimal to let the constraint bind at the lowest possible values y∗B.

Since investing nothing into the securities and holding a long position to the maximum

allowed by the market index fund margin coefficient is a feasible strategy, we conclude

that y∗B ≤ λ+M/̟. The key thing to observe is that y∗B is such that (y∗B)
−1−̟ω∗

M must be

non-negative as we must have ω∗
M ≤ λ+M and y∗B ≤ λ+M/̟. This implies that at y = y∗B,

the sign of the position in asset i is the same as the sign of e⊺i (σσ
⊺)−1(µ − r1), which

pins down the value of the margin coefficients for the securities. Since, by assumption,

π > 0, this implies that at y = y∗B, on the aggregate all securities must be held in a long
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position. Then as argued before, it is optimal to choose the position in the market index

fund, ω∗
M , such that (λM − π⊺λ)ω∗

M achieves the lowest possible value. Therefore, it is

never optimal to short the index fund, so we must have λM = λ+M . It is then easy to see

that

y∗B =





λ⊺(σσ⊺)−1(µ− r1), if λ+M − π⊺λ > 0, when ω∗
M = 0 is optimal,

λ+M1
⊺

(σσ⊺)−1(µ− r1), if λ+M − π⊺λ = 0, when ω∗
M =

[
0, 1

λ+

M

]
is optimal

λ+M1
⊺

(σσ⊺)−1(µ− r1), if λ+M − π⊺λ < 0, when ω∗
M = 1

λ+

M

is optimal and ω∗ = 0.

(160)

We now examine how asset selection takes place for y < y∗B. If

µM − r

λ+M
> max

k∈{1,...,N}
max

λk∈{−λ−

k
,λ+

k
}

µk − r

λk
, (161)

then no securities are held at y = y∗B and are never re-integrated into the portfolio: for

all y ≤ y∗B, ω
∗ = 0 and ω∗

M = 1/λ+M , i.e., only the market index fund is held when its

leveraged expected excess return is greater than the leveraged expected excess returns

of every risky asset.

Next, we assume that

µM − r

λ+M
< max

k∈{1,...,N}
max

λk∈{−λ−

k ,λ+

k }

µk − r

λk
. (162)

For values of the lifetime relative risk aversion, y, slightly below y∗B, the analysis con-

ducted for the no short sale case still applies. In particular, if not already dropped from

the portfolio, the market index fund is the first asset to be dropped from the portfolio,

possibly at the same time as another security, as soon as y reaches a low enough level.

The only case that remains to be investigated is the case where if at y = y∗K , exactly

K securities are held in the portfolio, some possibly in a short position, is it optimal

to re-integrate the market index fund into the portfolio? The answer is no: should the

market index fund be re-integrated into the portfolio at y∗R,M < y∗K , using Lemma J.1,

we obtain that the set of K securities must be such that −IK,K+1V
−1
K (JKλ, λ

+
M) has the

same sign as the vector of margin coefficients JKλ. Recall that the Lagrange multi-

plier ψK+1 increases as the value of the lifetime relative risk aversion, y, decreases. As

JKω
∗ = −y−1ψK+1(y)IK,K+1V

−1
K (JKλ

+, λ+M), the allocations in the K securities must

be increasing, in absolute value, as y decreases, and because the margin requirement is
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binding, the position in the market index fund has to be decreasing, in absolute value.

Eventually, the market index fund drops out from the portfolio, which leads to a con-

tradiction. We conclude that once dropped from the portfolio, the market index fund is

never re-integrated into the portfolio at a lower level of the lifetime relative risk aversion,

y.

Appendix K. Proof of Proposition 9

Investment inside the nonbinding region.

Recall that we assume Θ = 0. We start with some properties of the optimal alloca-

tions inside the nonbinding region. Consumption, wealth and income are linked by the

following relationshipW+BY = Ac+Kc1−βY β or, equivalently, using reduced variables

v +B = Af ′(v)−
1

γ +Kf ′(v)
β−1

γ . (163)

Applying Itô’s lemma and identifying the coefficients with the wealth dynamics, the

optimal portfolio allocations are given by

z∗ = zf − βK
(σσ⊺)−1η

γ
f ′(v)

β−1

γ Y. (164)

When e⊺i (σσ
⊤)−1η > 0(< 0), the constrained asset allocation z∗i is lower (higher) than its

unconstrained counterpart zfi . Next, we show that, inside the nonbinding region, income

has the same effect on the constrained risky allocations as it has on the unconstrained

ones. Differentiating Eq. (163) yields

f ′(v)

f ′′(v)
= −

A

γ
f ′(v)−

1

γ +
β − 1

γ
Kf ′(v)

β−1

γ < 0. (165)
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From Eqs. (165) and (163) it is easy to check that the margin requirement is not binding

for f ′(v)
1

γ ≤ Z∗, for some 0 < Z∗ < Ẑ where Ẑ = βA/ ((β − 1)B). Then, we have

∂z∗

∂Y
= (σσ⊺)−1η

(
B − βKf ′(v)

β−1

γ (1−
β − 1

γ

vf ′′(v)

f ′(v)
)

)

=
(σσ⊺)−1η

A− (β − 1)Kf ′(v)
β
γ

(
AB + (β − 1)2BKf ′(v)

β
γ − β2AKf ′(v)

β−1

γ

)
.

(166)

Set Z = f ′(v)
1

γ and for Z in [0, Z∗], define the auxiliary function h with

h(Z) = AB + (β − 1)2BKZβ − β2AKZβ−1. (167)

h is a smooth function with h′(Z) = β(β − 1)2KBZβ−2(Z − Ẑ) < 0, so it is decreasing

on [0, Z∗], since Z∗ < Ẑ. We want to show that h is positive on [0, Z∗]. First, note that

h(0) = AB > 0. Then, for Z = Z∗, the margin constraint is binding and for Z ≤ Z∗ we

have (λ∗B)
⊤z∗ ≤W or, equivalently, using the expression of z∗

v(1−
(λ∗B)

⊺(σσ⊺)−1(µ− r1)

γ
) ≥

(λ∗B)
⊺(σσ⊺)−1η

γ
(B − βKf ′(v)

β−1

γ ). (168)

Using Eq. (163) we obtain that for all Z in [0, Z∗]

KZβ ≥ ϑ(Z − Z)

K(Z∗)β = ϑ(Z∗ − Z),
(169)

where

Z =
1−

(λ∗

B)⊺(σσ⊺)−1(µ−r1)

γ

1− (λ∗B)
⊺(σσ⊺)−1σΣ

A

B
> 0

ϑ =
B (1− (λ∗B)

⊺(σσ⊺)−1σΣ)

1− (λ∗B)
⊺(σσ⊺)−1σΣ+ (β − 1)

(λ∗

B)⊺(σσ⊺)−1η

γ

> 0.

(170)

Finally, we have

h(Z∗) =
B

Z∗
(βZ − (β − 1)Z∗). (171)

It remains to show that

Z∗ ≤ βZ/(β − 1). (172)
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Set x = Z/Z∗ and x∗ = Z/Z∗ < 1, so that for all 0 ≤ x ≤ 1, we have

xβ ≥
x− x∗

1− x∗
. (173)

We want to show that this is the case if and only if

x∗ ≥ (β − 1)/β, (174)

or, equivalently,

β ≤
1

(1− x∗)
. (175)

For x ∈ [0, 1], define the auxiliary function f with

f(x) = xβ −
x− x∗

1− x∗
. (176)

Observe that

f(0) =
x∗

1− x∗
> 0

f(1) =0

f ′(x) =βxβ−1 − (1− x∗)−1.

(177)

If β > 1/(1−x∗), then f ′(1) > 0 and since f(1) = 0, it must be the case that f(1−ε) < 0,

for some ε > 0 small enough. This leads to a contradiction since by the condition in

Eq. (169) f is non-negative on [0, 1]. Thus, we must have β ≤ 1/(1−x∗) or, equivalently,

Z∗ ≤
βZ

β − 1
. (178)

It follows that h(Z∗) ≥ 0 and for all Z in [0, Z∗), h(Z) > 0. We can conclude that z∗i is

increasing (decreasing) with income exactly when e⊤i (σσ
⊤)−1η > 0(< 0). Finally, since

z∗

W
= (σσ⊺)−1σΣ +

(σσ⊺)−1η

y
, (179)

we deduce that
∂

∂Y

(
1

y

)
≥ 0, (180)
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which implies that
∂y

∂Y
≤ 0. (181)

Furthermore, since
∂y

∂Y
= −v

∂y

∂v
, (182)

we find that
∂y

∂v
≥ 0. (183)

At Y = 0; i.e., when v is infinite, y = γ, so we deduce that for all v inside the non-binding

region, y < γ. Finally, note that z∗/W rises as v and W decrease.

Global properties of the optimal consumption c∗.

Recall that

c∗ = Y f ′(v)−
1

γ , (184)

so
∂c∗

∂W
= −

f ′′(v)f ′(v)−
1

γ
−1

γ
> 0. (185)

Then
∂c∗

∂Y
=
f ′(v)−

1

γ

γ
(γ − y) . (186)

Inside the nonbinding region, we have seen that y < γ, and inside the binding region, we

must have y < y∗B < γ. Hence, we always have y < γ and we conclude that ∂c∗/∂Y > 0.

Appendix L. Proof of Proposition 10

For y < y∗B, the Hamilton-Jacobi-Bellman equation is such that the coefficient of the

term v2f ′′(v) is positive and the coefficient of the term −(f ′(v))2/f ′′(v) is nonnegative.

This is exactly the same type of ODE studied by Duffie, Fleming, Soner, and Zariphopoulou

(1997). In Proposition 1 of their paper, these authors establish that

lim
v↓0
f ′(v) (187)
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exists, is positive and finite. They also show that

lim
v↓0

sup−vf ′′(v) = 0. (188)

Since

0 < −vf ′′(v) ≤ sup
0<x≤v

− xf ′′(x), (189)

it follows that

lim
v↓0

− vf ′′(v) = 0. (190)

Hence, we have

lim
v↓0

−
vf ′′(v)

f ′(v)
= 0. (191)

Around v = 0, we postulate the following asymptotic expansion

f(v) ∼
0
d0 + v − d1v

3

2 + d2v
2 + o(v2), (192)

for some constants d0, d1 > 0 and d2 to be determined. Our choice for f ′(0) = 1 is

justified because if f ′(0) = 1, the quantity

γ

1− γ
(f ′(v))

γ−1

γ + f ′(v) (193)

achieves its maximum value for v = 0. Using the Hamilton-Jacobi-Bellman Eq. (69) for

K = 1 and identifying coefficients, we obtain

f(0) = d0 =
1

(1− γ)
(
θ + (γ − 1)(m− γ Σ⊤Σ+Θ⊤Θ

2
)
) > 0, (194)

and

θ + (γ − 1)(m− γ
Σ⊺Σ+Θ⊤Θ

2
) =

9

8γ
d21 + (r −m+ γ(Σ⊺Σ+Θ⊤Θ) +

η1
λ∗1

). (195)

It follows that

d1 =
2
√

2γ(θ + γ(m− (γ + 1)Σ
⊺Σ+Θ⊤Θ

2
))− (r + η1/λ∗1)

3
> 0. (196)
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This implies that

c∗ ∼
0
Y (197)

and,

y = −
vf ′′(v)

f ′(v)
∼
0

3d1v
1

2

4
. (198)

Appendix M. Proof of Proposition 11

When income is deterministic, we have, in the dual formulation, κ∗ ≡ 0. Notice that

u′(c∗t ) = Xa∗,b∗,0
t with

dXa∗,b∗,0
t = Xa∗,b∗,0

t (−(r + a∗t )dt+ (ζa
∗,b∗

t )⊺dwt), (199)

where

ζa
∗,b∗

t = −σ−1
(
b∗t − a∗t1 + µ− r1

)
. (200)

Using Itô’s lemma, we find that the consumption growth rate is given by

dc∗t
c∗t

=

(
r + a∗t − θ

RR(c∗t )
+

1

2

RP (c∗t )

(RR(c∗t ))
2

∥∥∥ζa
∗,b∗

t

∥∥∥
2
)
dt+

(ζa
∗,b∗

t )⊺

RR(c∗t )
dwt, (201)

where

RR(c) = −
cu′′(c)

u′(c)
(202)

is the relative risk aversion ratio and

RP (c) = −
cu′′′(c)

u′′(c)
(203)

is the relative risk prudence ratio. The instantaneous volatility of consumption is given

by
∥∥∥ζa

∗,b∗

t

∥∥∥
2

/(RR(c∗t ))
2. We now show that for all t ≥ 0,

∥∥∥ζa
∗,b∗

t

∥∥∥
2

≤ ‖ζ0,0‖
2
. Inside the

nonbinding region, we have ζa
∗,b∗

t = ζ0,0. Inside the binding region when K assets are

held, for some λ ∈ Λ, we have

b∗ = (1− λ)a∗

a∗ =
(IKλ)

⊺(IKσσ
⊺I⊺K)

−1IK(µ− r1)− y

(IKλ)⊺(IKσσ⊺I⊺K)
−1(IKλ)

> 0,
(204)
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so that ∥∥ζa∗,b∗
∥∥2 = (IK(µ− r1− λa∗))⊺(IKσσ

⊺I⊺K)
−1IK(µ− r1− λa∗). (205)

Hence for all λ ∈ Λ

∂

∂y

∥∥ζa∗,b∗
∥∥2 = −2

∂a∗

∂y
(IKλ)

⊺(IKσσ
⊺I⊺K)

−1IK(µ−r1−λa
∗) =

2

(IKλ)⊺(IKσσ⊺I⊺K)
−1(IKλ)

> 0.

(206)

Given what precedes, since at y = y∗B we have
∥∥ζa∗,b∗

∥∥ = ‖ζ0,0‖, we deduce that for all

y ≤ y∗B,
∥∥ζa∗,b∗

∥∥ ≤ ‖ζ0,0‖ .

Appendix N. Numerical Algorithm

N.1. Model Setup

Market

The continuous-time dynamics of the asset values and income changes are given by

Eqs. (1), (2), and (3) in the paper. We approximate the continuous-time dynamics by

a discrete-time Markov chain using the discretization described in He (1990). In this

discretization an N dimensional multivariate normal distribution is described by N + 1

nodes. Discretizing returns in this fashion preserves market completeness in discrete

time.

Optimization problem

We consider the optimization problem described in Eq. (9) of Section 2 of the paper

in a discrete-time setting, where the investor starts working at time 0 and retires at time

T . From the discussion of homogeneity in Section 2 of the paper, we can reduce the

number of state variables after scaling by income Yt and obtain the following Bellman

equation at t = 0, . . . , T − 1 :

ft (vt) = max
qt,ωt

u (qt) + βEt

[
g1−γ
t ft+1 (vt+1)

]

s.t. vt+1 = g−1
t (vt + 1− qt)

(∑N
i=1 ωi,tR

e
i,t +Rf

)

λ+
∑N

i=1 ω
+
i,t + λ−

∑N
i=1 ω

−
i,t ≤ 1

fT = φτ
(vT+1)1−γ

1−γ

(207)
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where vt = Wt/Yt is the wealth over income ratio; qt = ct/Yt is the consumption over

income ratio; ωt = zt/Wt is the portfolio weight; gt = Yt+1/Yt is the income growth rate

over period t; Re is the expected one period excess asset return; Rf is the one period

return of the money-market account; ft (vt) = Y
−(1−γ)
t Ft (Wt, Yt) is the reduced value

function; and the factor φτ captures the effect of the investor’s remaining lifetime. If

the investor’s remaining life is τ years, and the opportunity set remains constant, then

the factor φτ is given by

φτ =

[
1− (βα)1/γ

1− (βα)(τ+1)/γ

]−γ

,

α = E



(

N∑

i=1

ω∗
iR

e
i +Rf

)1−γ



(208)

where ω∗ are the optimal portfolio weights after retirement — see Ingersoll (1987).

N.2. Solution Methodology

To solve the problem described in Eq. (207), we extend the method proposed by

Brandt, Goyal, Santa-Clara, and Stroud (2005) to incorporate endogenous state vari-

ables and constraints on portfolio weights. We also use an iterative method to find the

solution to the Karush-Kuhn-Tucker (KKT) conditions; i.e., the first order conditions

with constraints. The idea is to approximate the conditional expectations in the KKT

conditions locally within a region that contains the solution to the KKT conditions and

iteratively contract the size of the region.

As suggested by Carroll (2006), we separate consumption optimization from portfolio

optimization in Eq. (207) by defining a new variable, total investment It:

It = vt − qt + 1. (209)

At the optimal value of consumption, q∗t , Eq. (209) defines an one-to-one correspondence

between wealth vt and total investment It. Therefore we can specify a particular grid,

G, either through wealth, vt (G), or, equivalently, through investment, It (G). Specifying

It (G) instead of vt (G) allows splitting the problem in Eq. (207) into two subproblems:
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[Portfolio Optimization]

f p
t (It) = max

ωt

βEt

[
g1−γ
t ft+1 (vt+1)

]
, t = 0, . . . , T − 1

s.t. vt+1 = g−1
t It

(∑N
i=1 ωi,tR

e
i,t +Rf

)

λ+
∑N

i=1 ω
+
i,t + λ−

∑N
i=1 ω

−
i,t ≤ 1

(210)

[Consumption Optimization]

ft (vt) = max
qt

u (qt) + f p
t (vt − qt + 1) , t = 0, . . . , T − 1, (211)

where f p (·) is the value function of the portfolio optimization problem in Eq. (210).

Given the separation of consumption and portfolio optimization, we use the following

algorithm to solve the problem in Eq. (207):

Algorithm

Step 1: Set the terminal condition at time T .

Step 2: Find the optimal portfolio and consumption backwards at t = T − 1, T − 2, · · · , 0:

Step 2.1: Construct a grid for total investment It with ng grid points {I it}
ng

i=1.

Step 2.2: Find the optimal portfolio and consumption at each grid point I it , i = 1, · · · , ng:

Step 2.2.1: [Portfolio optimization] given I it , find ω
∗
t (I

i
t) by solving Eq. (210).

Step 2.2.2: [Consumption optimization] given {I it , ω
∗
t (I

i
t)}, find q∗t (I

i
t) by solving

Eq. (211).

Step 2.2.3: Recover state variable vt at grid point i by vit = I it + q∗t (I
i
t)− 1.

After specifying the factor φτ , Step 1 is trivial. Step 2.1 requires constructing a grid

in an one-dimensional space. To account for the nonlinearity of the value function at

lower wealth levels we place more grid points toward the lower investment values in a

double exponential manner as suggested by Carroll (2006).
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N.3. Portfolio Optimization

Given a grid point I it , i = 1, · · · , ng, we want to optimize over ωt by solving Eq. (210).

To simplify the problem, and slightly abusing notation, we consider ω+
t , ω

−
t as choice

variables, such that ω+
t ≥ 0, ω−

t ≥ 0, ωt = ω+
t − ω−

t and solve the following problem:

f p
t (It) = max

ω+
t ,ω−

t

βEt

[
g1−γ
t ft+1 (vt+1)

]

s.t. vt+1 = g−1
t It

[∑N
i=1

(
ω+
i,t − ωi,t−

)
Re

i,t +Rf
]

λ+
∑N

i=1 ω
+
i,t + λ−

∑N
i=1 ω

−
i,t ≤ 1

ω+
i,t, ω

−
i,t ≥ 0, i = 1, · · · , N

(212)

Notice that to maintain equivalence between Eqs. (210) and (212) we also need the

constraints ω+
i,tω

−
i,t = 0 for i = 1, · · · , N , in Eq. (212). However, one can show that

dropping these constraints will expand the feasible region but will not introduce new

optimal solutions which are non-trivially different.

The Lagrangian and KKT conditions of the problem in Eq. (212) are given by:

Lagrangian

Lp
(
ω+
t , ω

−
t , l

+
t , l

−
t , l

m
t

)
= βEt

[
g1−γ
t ft+1 (vt+1)

]
+
∑N

i=1 l
+
i,tω

+
i,t +

∑N
i=1 l

−
i,tω

−
i,t

+lmt

(
1− λ+

∑N
i=1 ω

+
i,t − λ−

∑N
i=1 ω

−
i,t

) (213)

KKT conditions

0 = βItEt

{
g−γ
t

∂ft+1(vt+1)
∂vt+1

Re
i,t

}
+ l+i,t − lmt λ

+, i = 1, . . . , N FOCs

0 = −βItEt

{
g−γ
t

∂ft+1(vt+1)
∂vt+1

Re
i,t

}
+ l−i,t − lmt λ

−, i = 1, . . . , N FOCs

0 = l+i,tω
+
i,t, i = 1, · · · , N Complementarity

0 = l−i,tω
−
i,t, i = 1, · · · , N Complementarity

0 = lmt

(
1− λ+

∑N
i=1 ω

+
i,t − λ−

∑N
i=1 ω

−
i,t

)
Complementarity

1 ≥ λ+
∑N

i=1 ω
+
i,t + λ−

∑N
i=1 ω

−
i,t Feasibility

0 ≤ ω+
i,t, ω

−
i,t, l

+
i,t, l

−
i,t, l

m
t , i = 1, · · · , N Feasibility

(214)

where lmt is the Lagrange multipliers of the margin constraint; l+t and l−t are the Lagrange

multipliers of the non-negativity constraints. While in general the KKT conditions are
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only necessary for optimality, for the problem in Eq. (212) the KKT conditions are

both necessary and sufficient since the objective function is concave in
(
ω+
t , ω

−
t

)
and all

constraints are linear in
(
ω+
t , ω

−
t

)
.

Solving the KKT conditions requires enumeration of all the possibilities for the com-

plementary conditions. In general, the 2N + 1 Lagrange multipliers (lmt , l
+
i,t, l

−
i,t, i =

1, · · · , N) give 22N+1 possible specifications of the complementary conditions. However

many of these specifications can be combined or ignored: if the margin constraint is

not binding (lmt = 0) we only need to solve the FOCs without splitting ωt as ω
+
t − ω−

t ;

if the margin constraint is binding (lmt > 0) we can ignore all the specifications with

ω+
i,tω

−
t > 0, i = 1, · · · , N , since these specifications are not optimal. Overall there are

3N + 1 specifications that need to be checked. Once a solution to the KKT conditions

under any of these specifications is found we can stop since the sufficiency of the KKT

conditions guarantees optimality.

Approximation of conditional expectations

We use functional approximation to approximate conditional expectations in the

KKT conditions as a linear combination of basis functions:

Et

{
g−γ
t

∂ft+1 (vt+1)

∂vt+1

Re
i,t

∣∣∣∣ It, ω
+
t , ω

−
t

}
≈

nb∑

j=1

αij (It) bj (ωt) , i = 1, · · · , N, (215)

where nb is the number of basis functions and {bj (·)}
nb

j=1 are the basis functions on port-

folio weights ωt = ω+
t −ω

−
t . The coefficients αij (It) at each investment grid point {I it}

ng

i=1

are estimated through cross-test-solution regression in the following way: we randomly

generate ns test solutions
{
ω
(k)
t

}ns

k=1
within a set called the test region. To guarantee

that all the test solutions are feasible we assume that the test region is included in the set

of all feasible solutions Q. For each test solution ω
(k)
t we evaluate the basis functions at

the test solution
{
bj(ω

(k)
t )
}nb

j=1
; given the test solution ω

(k)
t and the investment level It,

we generate returns for the risky assets following the discretization procedure described

in He (1990) and compute the expectation of the left-hand-side of Eq. (215); the weights

αij(It) are estimated by OLS regression across the ns test solutions. The basis functions

we use are powers of the choice variables up to third order. We use the multidimensional

root-finding solver of the GSL library to solve the KKT conditions. We use 300 grid
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points and 300 test solutions after checking that the results do not change if 500 grid

points and 500 test solutions are used.

Test region iterative contraction (TRIC)

TRIC is a method introduced in Yang (2010) to improve the accuracy of the func-

tional approximation approach for solving the dynamic portfolio choice problem. When

we approximate the conditional expectation in Eq. (215) through cross-test-solution re-

gressions, the quality of the approximation is affected by the number of basis functions

nb, the number of test solutions ns, and the size of the test region: keeping nb and ns

constant, the smaller the test region, the more accurate the approximation. This moti-

vates the method of contracting the test region in an iterative manner: at each iteration

i, we estimate the approximation in Eq. (215) with test solutions generated within Q(i);

using this approximation we solve the KKT conditions to find ω(i); if ω(i) ∈ Q(i) we

contract the test region of the next iteration to Q(i+1) ⊂ Q(i); if the new solution is

outside the test region, ω(i) /∈ Q(i), we enlarge the test region of the next iteration to

Q(i) ⊂ Q(i+1) ⊂ Q(i−1); after each iteration, we check convergence by computing the

relative change in portfolio weights
∥∥ω(i) − ω(i−1)

∥∥ /
∥∥ω(i−1)

∥∥, where ‖x‖ is the norm of

x, defined by ‖x‖2 = Trace(x⊺x), and comparing it with a threshold ε. In our numer-

ical tests we contracted the test region by 50%. If the test region did not contain the

solution, we expanded the test region by 150%. In the results we report the algorithm

converged within two to three iterations for most grid points.

To start the procedure we need an initial test region Q(0) that contains the optimal

solution. If no further information is available we can set Q(0) = Q, the feasible region

of the problem, defined in Eq. (212). However, it is possible to obtain a smaller Q(0) if

we know the solution for similar parameter values, called a reference solution. We have

used our knowledge of the asymptotic behavior of the solutions to construct reference

solutions: for each time period we always solve from the grid point with the highest

investment level down to the grid point with the lowest investment level; the solution

at the higher level grid point serves as the reference solution for the adjacent lower level

grid point; when we change between time periods the reference solution at the highest

level grid point is set by linearly interpolating the solutions at the next period; at the

last time period, t = T − 1, the reference solution at the highest level grid point, where

the margin constraint is not binding, is set to the analytical solution.

49



N.4. Consumption Optimization and Value Function Sensitivity

After the optimal portfolio at an investment grid point has been found, we find the

optimal level of consumption at that grid point by solving the consumption optimization

problem defined in Eq. (211). The first order condition leads to

q−γ
t =

∂f p
t (It)

∂It
. (216)

To evaluate the term ∂f p
t (It) /∂It, we apply the envelope theorem to the Lagrangian Lp

in Eq. (213) and obtain

∂f p
t (It)

∂It
=
∂Lp

∂It

∣∣∣∣
ω∗
t (It)

= βEt

[
g−γ
t

∂ft+1 (vt+1)

∂vt+1

(
n∑

i=1

ω∗
t (It)R

e
i,t +Rf

)]
, (217)

where the conditional expectation is estimated using the discretization scheme for the

returns of the risky assets.

In both the portfolio optimization step and the consumption optimization step at

time t, we need to evaluate the value function sensitivity ∂ft+1 (vt+1) /∂vt+1. To evaluate

this sensitivity without knowing the functional form of ft+1 (vt+1), we apply the envelope

theorem to the Lagrangian, L (qt+1, vt+1) = u (qt+1) + f p
t+1 (vt+1 − qt+1 + 1), and get

∂ft+1 (vt+1)

∂vt+1

=
∂L (qt+1, vt+1)

∂vt+1

∣∣∣∣
q∗t+1

(vt+1)

=
∂f p

t+1 (It+1)

∂It+1

∣∣∣∣
q∗t+1

(vt+1)

= q∗−γ
t+1 (vt+1) . (218)

Thus, due to the form of the Lagrangian, the value function sensitivity of the problem

in Eq. (207) is completely specified by the optimal consumption as

∂ft+1(vt+1)
∂vt+1

=

{
q∗−γ
t+1 (vt+1) if t < T − 1

φτ (vT + 1)−γ if t = T − 1
(219)

To evaluate the value function sensitivity at values of v between grid points, we linearly

interpolate the optimal consumption results on grid points.
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Ivković, Z., Sialm, C., Weisbenner, S., 2008. Portfolio concentration and the performance

of individual investors. Journal of Financial and Quantitative Analysis 43, 613–656.

Levin, J., 2006. Supermodular games. Stanford University. Available at

http://www.stanford.edu/%7Ejdlevin/Econ%20286/Supermodular%20Games.pdf.

Topkis, D., 1998. Supermodularity and Complementarity. Princeton University Press,

Princeton, New Jersey.

Yang, C., 2010. Functional Approximation Methods for Solving Stochastic Control Prob-

lems in Finance. Ph.D. thesis, University of Texas at Austin.

51


	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Proposition 6
	Proof of Proposition 7
	Dual Approach: Fictitious Financial Market
	Dual Approach
	Proof of Proposition 8
	Proof of Proposition 9
	Proof of Proposition 10
	Proof of Proposition 11
	Numerical Algorithm
	Model Setup
	Solution Methodology
	Portfolio Optimization
	Consumption Optimization and Value Function Sensitivity


